login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001336 Number of n-step self-avoiding walks on f.c.c. lattice.
(Formerly M4867 N2082)
9
1, 12, 132, 1404, 14700, 152532, 1573716, 16172148, 165697044, 1693773924, 17281929564, 176064704412, 1791455071068, 18208650297396, 184907370618612, 1876240018679868 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 460.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=0..15.

M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.

B. D. Hughes, Random Walks and Random Environments, vol. 1, Oxford 1995, Tables and references for self-avoiding walks counts [Annotated scanned copy of several pages of a preprint or a draft of chapter 7 "The self-avoiding walk"]

J. L. Martin, M. F. Sykes and F. T. Hioe, Probability of initial ring closure for self-avoiding walks on the face-centered cubic and triangular lattices, J. Chem. Phys., 46 (1967), 3478-3481.

S. McKenzie, Self-avoiding walks on the face-centered cubic lattice, J. Phys. A 12 (1979), L267-L270.

S. Redner, Distribution functions in the interior of polymer chains, J. Phys. A 13 (1980), 3525-3541, doi:10.1088/0305-4470/13/11/023.

M. F. Sykes, Some counting theorems in the theory of the Ising problem and the excluded volume problem, J. Math. Phys., 2 (1961), 52-62.

Index entries for sequences related to f.c.c. lattice

CROSSREFS

Cf. A001411, A001412, A001334, A001666, A001337.

Sequence in context: A165150 A002921 A199941 * A118475 A190873 A097826

Adjacent sequences:  A001333 A001334 A001335 * A001337 A001338 A001339

KEYWORD

nonn,walk,nice,more

AUTHOR

N. J. A. Sloane

EXTENSIONS

a(15) from Bert Dobbelaere, Jan 13 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)