login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005902 Centered icosahedral (or cuboctahedral) numbers, also crystal ball sequence for f.c.c. lattice.
(Formerly M4898)
29
1, 13, 55, 147, 309, 561, 923, 1415, 2057, 2869, 3871, 5083, 6525, 8217, 10179, 12431, 14993, 17885, 21127, 24739, 28741, 33153, 37995, 43287, 49049, 55301, 62063, 69355, 77197, 85609, 94611, 104223, 114465, 125357, 136919, 149171 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Called "magic numbers" in some chemical contexts.

Partial sums of A005901(n). - Lekraj Beedassy, Oct 30 2003

Equals binomial transform of [1, 12, 30, 20, 0, 0, 0,...] [From Gary W. Adamson, Aug 01 2008]

Crystal ball sequence for A_3 lattice. - Michael Somos, Jun 03 2012

REFERENCES

S. Bjornholm, Clusters..., Contemp. Phys. 31 1990 pp. 309-324.

H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.

T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (2).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

LINKS

T. D. Noe, Table of n, a(n) for n=0..1000

J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (Abstract, pdf, ps).

D. R. Herrick, Home Page (displays these numbers as sizes of clusters in chemistry)

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

K. Urner, Cuboctahedral Sphere Packing

Index entries for crystal ball sequences

Index entries for sequences related to f.c.c. lattice

Index to sequences with linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = (2*n+1)*(5*n^2+5*n+3)/3.

For n>0, n*a(n) = sum[a(i), i=0..n-1] + 2*A005891(n)*A000217(n). - Bruno Berselli, Feb 02 2011

a(-1 - n) = -a(n). - Michael Somos, Jun 03 2012

EXAMPLE

a(4) = 147 = (1, 3, 3, 1) dot (1, 12, 30, 20) = (1 + 36 + 90 + 20). [From Gary W. Adamson, Aug 01 2008]

1 + 13*x + 55*x^2 + 147*x^3 + 309*x^4 + 561*x^5 + 923*x^6 + 1415*x^7 + ...

MAPLE

A005902 := n -> (2*n+1)*(5*n^2+5*n+3)/3;

A005902:=(z+1)*(z**2+8*z+1)/(z-1)**4; [Simon Plouffe in his 1992 dissertation.]

MATHEMATICA

f[n_] := (2n + 1)(5n^2 + 5n + 3)/3; Array[f, 36, 0] (* Robert G. Wilson v, Feb 02 2011 *)

PROG

(PARI) {a(n) = (2*n + 1) * (5*n^2 + 5*n + 3) / 3} (* Michael Somos, Jun 03 2012 *)

CROSSREFS

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Sequence in context: A198160 A029531 A158485 * A051798 A206372 A061161

Adjacent sequences:  A005899 A005900 A005901 * A005903 A005904 A005905

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 1 19:36 EDT 2014. Contains 245137 sequences.