login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058497
McKay-Thompson series of class 14A for Monster.
2
1, 0, 11, 20, 57, 92, 207, 312, 623, 932, 1674, 2464, 4162, 6024, 9595, 13748, 21126, 29820, 44449, 62004, 90191, 124288, 177135, 241632, 338508, 457272, 631031, 845008, 1150752, 1528380, 2057700, 2712192, 3614217, 4730148, 6245541, 8119672
OFFSET
-1,3
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
a(n) ~ exp(2*Pi*sqrt(2*n/7)) / (2^(3/4) * 7^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
Expansion of A - 4 + 1/A, where A = (eta(q^2)*eta(q^7)/(eta(q)*eta(q^14) ))^4, in powers of q. - G. C. Greubel, Jun 18 2018
EXAMPLE
T14A = 1/q + 11*q + 20*q^2 + 57*q^3 + 92*q^4 + 207*q^5 + 312*q^6 + 623*q^7 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; e14C := (eta[q^2]*eta[q^7]/(eta[q] *eta[q^14]))^4; a:= CoefficientList[Series[-4 + e14C + 1/e14C, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 18 2018 *)
PROG
(PARI) q='q+O('q^50); A = (eta(q^2)*eta(q^7)/(eta(q)*eta(q^14) ))^4/q; Vec(A - 4 + 1/A) \\ G. C. Greubel, Jun 18 2018
CROSSREFS
Cf. A134782 (same sequence except for n=0).
Sequence in context: A158245 A076851 A164576 * A134782 A067969 A068599
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 19 2014
STATUS
approved