OFFSET
1,1
REFERENCES
Concrete Mathematics - R. L. Graham, D. E. Knuth, O. Patashnik, 1994,Addison-Wesley Company, Inc.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
n - odd: t=(n+1)/2, a[n] := 4/15*t^5+2/3*t^4+8/3*t^3+10/3*t^2+46/15*t+1; n - even: t=n/2, a(n) := (4/15*t^5+2/3*t^4+8/3*t^3+10/3*t^2+46/15*t+1)+((2*(t*(t+1)*(t^2+t+4))/3)+1)
G.f.: x*(11-2*x-12*x^2+8*x^3+26*x^4-12*x^5-12*x^6+8*x^7+3*x^8-2*x^9)/ ((1+x)^4 * (x-1)^6) [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009]
EXAMPLE
a(5)=231 n=odd, t=3, a(5)=324/5+54+72+30+46/5+1=231 a(6)=360 n=even, t=3, a(6)=231+(24*16)/3+1=231+128+1=360
MAPLE
for n from 1 to k do if ((n mod 2 ) = 1) then t := (n+1)/2; a[n] := 4/15*t^5+2/3*t^4+8/3*t^3+10/3*t^2+46/15*t+1; else t := n/2; a[n] := ((4/15*t^5+2/3*t^4+8/3*t^3+10/3*t^2+46/15*t+1)+((2*(t*(t+1)*(t^2+t+4))/3)+1)); fi; print(a[n]); od;
CROSSREFS
KEYWORD
nonn
AUTHOR
S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Mar 11 2002
EXTENSIONS
G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.
STATUS
approved