This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034320 Coefficients of replicable function number 50a with a(0) = 1. 4
 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 76, 89, 104, 122, 141, 164, 191, 220, 254, 293, 336, 385, 442, 504, 575, 656, 745, 846, 960, 1086, 1228, 1388, 1564, 1762, 1984, 2228, 2501, 2806, 3142, 3516, 3932, 4390, 4898, 5462, 6082 (list; graph; refs; listen; history; text; internal format)
 OFFSET -1,4 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). REFERENCES F. Calegari, Review of "A first Course in modular forms" by F. Diamond and J. Shurman, Bull. Amer. Math. Soc., 43 (No. 3, 2006), 415-421. See p. 418 LINKS G. C. Greubel, Table of n, a(n) for n = -1..1000 D. Alexander, C. Cummins, J. McKay and C. Simons, Completely Replicable Functions, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy. I. Chen and N. Yui, Singular values of Thompson series. In Groups, difference sets and the Monster (Columbus, OH, 1993), pp. 255-326, Ohio State University Mathematics Research Institute Publications, 4, de Gruyter, Berlin, 1996. D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994). H. D. Nguyen, D. Taggart, Mining the OEIS: Ten Experimental Conjectures, 2013; Mentions this sequence. H. D. Nguyen, D. Taggart, Mining the OEIS: Ten Experimental Conjectures, 2013 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of Hauptmodul for Gamma_0(50)+50 in powers of q. Expansion of (q^-1) * chi(-q^25) / chi(-q) in powers of q where chi() is a Ramanujan theta function. - Michael Somos, Jun 09 2007 Expansion of (eta(q^2) * eta(q^25)) / (eta(q) * eta(q^50)) in powers of q. - Michael Somos, Sep 20 2004 Euler transform of period 50 sequence [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...]. - Michael Somos, Sep 20 2004 G.f. is Fourier series of a weight 0 level 50 modular form. f(-1 / (50 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 09 2007 G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2*v + 2*u*w + 2*u*v^2*w + v*w^2 - v^2 - u^2*w^2. - Michael Somos, Jun 09 2007 G.f.: 1/x * (Product_{k>0} (1 + x^k) / (1 + x^(25*k))). a(n) = A058703(n) unless n=0. a(n) ~ exp(2*Pi*sqrt(2*n)/5) / (2^(3/4) * sqrt(5) * n^(3/4)). - Vaclav Kotesovec, Sep 06 2015 EXAMPLE G.f. = q^-1 + 1 + q + 2*q^2 + 2*q^3 + 3*q^4 + 4*q^5 + 5*q^6 + 6*q^7 + 8*q^8 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ q^-1 QPochhammer[q^25, q^50] / QPochhammer[q, q^2], {q, 0, n}]; (* Michael Somos, Jul 11 2011 *) a[ n_] := SeriesCoefficient[ q^-1 Product[1 + q^k, {k, n + 1}] / Product[1 + q^k, {k, 25, n + 1, 25}], {q, 0, n}]; (* Michael Somos, Jul 11 2011 *) PROG (PARI) {a(n) = my(A); if( n<-1, 0, n++; A = 1 + x * O(x^n); polcoeff( prod( k=1, n, 1 + x^k, A) / prod( k=1, n\25, 1 + x^(25*k), A), n))}; /* Michael Somos, Sep 20 2004 */ (PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^25 + A) / (eta(x + A) * eta(x^50 + A)), n))}; /* Michael Somos, Sep 20 2004 */ (PARI) N=66; q='q+O('q^N); Vec( (eta(q^2)*eta(q^25))/(eta(q)*eta(q^50))/q ) \\ Joerg Arndt, Apr 09 2016 CROSSREFS Cf. A034321, A058703. Sequence in context: A034150 A288001 A034321 * A058703 A000009 A081360 Adjacent sequences:  A034317 A034318 A034319 * A034321 A034322 A034323 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 13:48 EST 2018. Contains 318063 sequences. (Running on oeis4.)