login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112142
McKay-Thompson series of class 8B for the Monster group.
5
1, 12, 66, 232, 639, 1596, 3774, 8328, 17283, 34520, 66882, 125568, 229244, 409236, 716412, 1231048, 2079237, 3459264, 5677832, 9200232, 14729592, 23325752, 36567222, 56778888, 87369483, 133315692, 201825420, 303257512
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(q)^12 in powers of q where chi() is a Ramanujan theta function.
Expansion of q^(1/2) * (eta(q^2)^2 / (eta(q) * eta(q^4)))^12 in powers of q.
G.f.: Product_{k>0} (1 + (-x)^k)^-12 = Product_{k>0} (1 + x^(2*k - 1))^-12.
a(n) = (-1)^n * A007249(n). Convolution inverse of A124863.
G.f.: T(0), where T(k) = 1 - 1/(1 - 1/(1 - 1/(1+(x)^(2*k+1))^12/T(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 06 2013
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(5/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
G.f.: exp(12*Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018
EXAMPLE
1 + 12*x + 66*x^2 + 232*x^3 + 639*x^4 + 1596*x^5 + 3774*x^6 + 8328*x^7 + ...
T8B = 1/q + 12*q + 66*q^3 + 232*q^5 + 639*q^7 + 1596*q^9 + 3774*q^11 + ...
MATHEMATICA
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ ((1 - m) m / 16 / q)^(1/2), {q, 0, n}]] (* Michael Somos, Jul 22 2011 *)
a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, 1, n, 2}]^-12, {x, 0, n}] (* Michael Somos, Jul 22 2011 *)
nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^12, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
QP = QPochhammer; s = (QP[q^2]^2/(QP[q]*QP[q^4]))^12 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 16 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)))^12, n))}
CROSSREFS
Sequence in context: A277104 A014787 A007249 * A271870 A114243 A000972
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved