This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112143 McKay-Thompson series of class 8D for the Monster group. 6
 1, -4, 2, 8, -1, -20, -2, 40, 3, -72, 2, 128, -4, -220, -4, 360, 5, -576, 8, 904, -8, -1384, -10, 2088, 11, -3108, 12, 4552, -15, -6592, -18, 9448, 22, -13392, 26, 18816, -29, -26216, -34, 36224, 38, -49700, 42, 67728, -51, -91688, -56, 123392, 66, -165128, 78, 219784, -85, -291072 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..499 from G. A. Edgar) D. Alexander, C. Cummins, J. McKay and C. Simons, Completely Replicable Functions, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy. D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994). FORMULA Expansion of q^(1/2)*(eta(q) / eta(q^4))^4 in powers of q. - G. A. Edgar, Apr 02 2017 a(0) = 1, a(n) = -(4/n)*Sum_{k=1..n} A046897(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 28 2017 EXAMPLE T8D = 1/q -4*q +2*q^3 +8*q^5 -q^7 -20*q^9 -2*q^11 +40*q^13 +... CROSSREFS The convolution square of this sequence is A007248, except for the constant term: T8D(q)^2 = T4C(q^2) - 8 - G. A. Edgar, Apr 02 2017 Sequence in context: A029841 * A112151 A112152 A211883 A083489 A065464 Adjacent sequences:  A112140 A112141 A112142 * A112144 A112145 A112146 KEYWORD sign AUTHOR Michael Somos, Aug 28 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.