OFFSET
0,2
COMMENTS
The convolution square of this sequence is A007248, except for the constant term: T8D(q)^2 = T4C(q^2) - 8. - G. A. Edgar, Apr 02 2017
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..499 from G. A. Edgar)
D. Alexander, C. Cummins, J. McKay and C. Simons, Completely Replicable Functions, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of q^(1/2)*(eta(q) / eta(q^4))^4 in powers of q. - G. A. Edgar, Apr 02 2017
a(0) = 1, a(n) = -(4/n)*Sum_{k=1..n} A046897(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 28 2017
EXAMPLE
T8D = 1/q -4*q +2*q^3 +8*q^5 -q^7 -20*q^9 -2*q^11 +40*q^13 +...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(1/2)*(eta[q]/eta[q^4])^4, {q, 0, 50}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, May 10 2018 *)
PROG
(PARI) q='q+O('q^50); Vec((eta(q)/eta(q^4))^4) \\ G. C. Greubel, May 10 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved