login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242106
Number T(n,k) of inequivalent n X n matrices using exactly k different symbols, where equivalence means permutations of rows or columns or the symbol set; triangle T(n,k), n>=0, 0<=k<=n^2, read by rows.
5
1, 0, 1, 0, 1, 4, 3, 1, 0, 1, 17, 121, 269, 241, 100, 24, 3, 1, 0, 1, 172, 15239, 316622, 1951089, 4820228, 5769214, 3768929, 1451594, 347251, 53628, 5645, 451, 37, 3, 1, 0, 1, 2811, 10802952, 3316523460, 170309112972, 2577666563670, 15839885888526
OFFSET
0,6
COMMENTS
Note that the sequence with very similar number A246106 is related but different! - M. F. Hasler, Apr 29 2022
LINKS
Alois P. Heinz, Rows n = 0..6, flattened
FORMULA
T(n,k) = A242095(n,k) - A242095(n,k-1) for k>0. T(n,0) = A242095(n,0).
EXAMPLE
T(2,2) = 4:
[1 0] [1 1] [1 0] [1 0]
[0 0], [0 0], [1 0], [0 1].
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 4, 3, 1;
0, 1, 17, 121, 269, 241, 100, 24, 3, 1;
0, 1, 172, 15239, 316622, 1951089, 4820228, 5769214, 3768929, ...
0, 1, 2811, 10802952, 3316523460, 170309112972, 2577666563670, ...
0, 1, 126445, 50459558944, 382379913244053, 233995925116415261, ...
MAPLE
with(numtheory):
b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
{seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
end:
A:= proc(n, k) option remember; add(add(add(mul(mul(add(d*
coeff(u, x, d), d=divisors(ilcm(i, j)))^(igcd(i, j)*
coeff(s, x, i)*coeff(t, x, j)), j=1..degree(t)),
i=1..degree(s))/mul(i^coeff(u, x, i)*coeff(u, x, i)!,
i=1..degree(u))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
i=1..degree(t))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
i=1..degree(s)), u=b(k$2)), t=b(n$2)), s=b(n$2))
end:
T:= (n, k)-> A(n, k) -A(n, k-1):
seq(seq(T(n, k), k=0..n^2), n=0..4);
MATHEMATICA
Unprotect[Power]; 0^0 = 1; Protect[Power]; b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Table[Map[Function[{p}, p+j*x^i], b[n-i*j, i-1]], {j, 0, n/i}] // Flatten]]; A[n_, k_] := A[n, k] = Sum[ Sum[ Sum[ Product[ Product[ Sum[d* Coefficient[u, x, d], {d, Divisors[LCM[i, j]]}]^(GCD[i, j]*Coefficient[s, x, i] * Coefficient[t, x, j]), {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}] / Product[ i^Coefficient[u, x, i]*Coefficient[u, x, i]!, {i, 1, Exponent[u, x]}] / Product[ i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}] / Product[ i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}], {u, b[k, k]}], {t, b[n, n]}], {s, b[n, n]}]; T[n_, k_] := A[n, k] - A[n, k-1]; Table[ Table[T[n, k], {k, 0, n^2}], {n, 0, 4}] // Flatten (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz *)
CROSSREFS
Row sums give A091057.
Main diagonal gives A360664.
Sequence in context: A054669 A131027 A133475 * A294885 A021236 A136590
KEYWORD
nonn,tabf,look
AUTHOR
Alois P. Heinz, Aug 15 2014
STATUS
approved