The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A131027 Period 6: repeat [4, 3, 1, 0, 1, 3]. 12
 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Third column of triangular array T defined in A131022. a(n) = abs(A078070(n+1)). Determinants of the spiral knots S(3,k,(1,1)). a(k+4) = det(S(3,k,(1,1))). These knots are also the torus knots T(3,k). - Ryan Stees, Dec 13 2014 LINKS A. Breiland, L. Oesper, and L. Taalman, p-Coloring classes of torus knots, Online Missouri J. Math. Sci., 21 (2009), 120-126. N. Brothers, S. Evans, L. Taalman, L. Van Wyk, D. Witczak, and C. Yarnall, Spiral knots, Missouri J. of Math. Sci., 22 (2010). M. DeLong, M. Russell, and J. Schrock, Colorability and determinants of T(m,n,r,s) twisted torus knots for n equiv. +/-1(mod m), Involve, Vol. 8 (2015), No. 3, 361-384. Seong Ju Kim, R. Stees, and L. Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), #16.1.4. Ryan Stees, Sequences of Spiral Knot Determinants, Senior Honors Projects, Paper 84, James Madison Univ., May 2016. Index entries for linear recurrences with constant coefficients, signature (2,-2,1). FORMULA a(1) = 4, a(2) = a(6) = 3, a(3) = a(5) = 1, a(4) = 0, a(6) = 1; for n > 6, a(n) = a(n-6). G.f.: (4-5*x+3*x^2)/((1-x)*(1-x+x^2)). a(n) = 1/30*{-(n mod 6)-6*[(n+1) mod 6]-[(n+2) mod 6]+9*[(n+3) mod 6]+14*[(n+4) mod 6]+9*[(n+5) mod 6]}, with n>=0. - Paolo P. Lava, Jun 19 2007 a(n) = 2+cos(n*Pi/3)+sqrt(3)*sin(n*Pi/3) = 2+(-1)^((n-1)/3)+(-1)^((1-n)/3). - Wesley Ivan Hurt, Sep 11 2014 a(k+4) = det(S(3,k,(1,1))) = (b(k+4))^2, where b(5)=1, b(6)=sqrt(3), b(k)=sqrt(3)*b(k-1) - b(k-2) = b(6)*b(k-1) - b(k-2). - Ryan Stees, Dec 13 2014 a(n) = 2 + 2*cos(Pi/3*(n-1)) = 2 + A087204(n-1) for n >= 1. - Werner Schulte, Jul 18 2017 and Peter Munn, Apr 28 2022 EXAMPLE For k=3, b(7)=sqrt(3)b(6)-b(5)=3-1=2, so det(S(3,3,(1,1)))=2^2=4. MAPLE A131027:=n->2+cos(n*Pi/3)+sqrt(3)*sin(n*Pi/3): seq(A131027(n), n=1..100); # Wesley Ivan Hurt, Sep 11 2014 MATHEMATICA Table[2 + Cos[n*Pi/3] + Sqrt[3]*Sin[n*Pi/3], {n, 30}] (* Wesley Ivan Hurt, Sep 11 2014 *) PROG (PARI) {m=105; for(n=1, m, r=(n-1)%6; print1(if(r==0, 4, if(r==1||r==5, 3, if(r==3, 0, 1))), ", "))} (Magma) m:=105; [ [4, 3, 1, 0, 1, 3][(n-1) mod 6 + 1]: n in [1..m] ]; (Sage) [(lucas_number2(n, 2, 1)-lucas_number2(n-1, 1, 1)) for n in range(4, 109)] # Zerinvary Lajos, Nov 10 2009 CROSSREFS Cf. A087204, A131022, A078070. Other columns of T are in A088911, A131026, A131028, A131029, A131030. Sequence in context: A285650 A144161 A054669 * A133475 A242106 A294885 Adjacent sequences: A131024 A131025 A131026 * A131028 A131029 A131030 KEYWORD nonn,easy AUTHOR Klaus Brockhaus, following a suggestion of Paul Curtz, Jun 10 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 1 06:22 EST 2023. Contains 359981 sequences. (Running on oeis4.)