This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A087204 Period 6: repeat [2, 1, -1, -2, -1, 1]. 10
 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Satisfies (a(n))^2 = a(2n) + 2. Shifted differences of itself. Multiplicative with a(2^e) = -1, a(3^e) = -2, a(p^e) = 1 otherwise. - David W. Wilson, Jun 12 2005 Moebius transform is length 6 sequence [1, -2, -3, 0, 0, 6]. - Michael Somos, Oct 22 2006 REFERENCES A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 176. LINKS Tanya Khovanova, Recursive Sequences Wikipedia, Lucas sequence Index entries for linear recurrences with constant coefficients, signature (1,-1). FORMULA a(n) = a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 1. G.f.: (2-x)/(1-x+x^2). a(n) = Sum_{k>=0} (-1)^k*n/(n-k)*C(n-k, k). a(n) = (1/2)*((-1)^floor(n/3) + 2*(-1)^floor((n+1)/3) + (-1)^floor((n+2)/3)). a(n) = -(1/6)*((n mod 6)+2*((n+1) mod 6)+((n+2) mod 6)-((n+3) mod 6)-2*((n+4) mod 6)-((n+5) mod 6)). - Paolo P. Lava, Oct 09 2006 a(n) = a(-n) = -a(n-3) for all n in Z. - Michael Somos, Oct 22 2006 E.g.f. 2*exp(x/2)*cos(sqrt(3)*x/2). - Sergei N. Gladkovskii, Aug 12 2012 a(n) = r^n + s^n, with r=(1+i*sqrt(3))/2 and s=(1-i*sqrt(3))/2 the roots of 1-x+x^2. - Ralf Stephan, Jul 19 2013 a(n) = 2*cos(n*Pi/3). - Wesley Ivan Hurt, Jun 19 2016 EXAMPLE a(2) = -1 = a(1) - a(0) = 1 - 2 = ((1+sqrt(-3))/2)^2 + ((1-sqrt(-3))/2)^2 = -1 = -2/4 + 2sqrt(-3)/4 - 2/4 -2 sqrt(-3)/4 = -1. G.f. = 2 + x - x^2 - 2*x^3 - x^4 + x^5 + 2*x^6 + x^7 - x^8 - 2*x^9 - x^10 + ... MAPLE A087204:=n->[2, 1, -1, -2, -1, 1][(n mod 6)+1]: seq(A087204(n), n=0..100); # Wesley Ivan Hurt, Jun 19 2016 MATHEMATICA PadLeft[{}, 108, {2, 1, -1, -2, -1, 1}] (* Harvey P. Dale, Sep 11 2011 *) a[ n_] := {1, -1, -2, -1, 1, 2}[[Mod[n, 6, 1]]]; (* Michael Somos, Jan 29 2015 *) a[ n_] := 2 Re[ Exp[ Pi I n / 3]]; (* Michael Somos, Mar 29 2015 *) PROG (PARI) {a(n) = [2, 1, -1, -2, -1, 1][n%6 + 1]}; /* Michael Somos, Oct 22 2006 */ (Sage) [lucas_number2(n, 1, 1) for n in xrange(0, 102)] # Zerinvary Lajos, Apr 30 2009 (MAGMA) &cat[[2, 1, -1, -2, -1, 1]^^20]; // Wesley Ivan Hurt, Jun 19 2016 CROSSREFS Essentially the same as A057079 and A100051. Pairwise sums of A010892. Sequence in context: A131556 A107751 A132367 * A101825 A177702 A131534 Adjacent sequences:  A087201 A087202 A087203 * A087205 A087206 A087207 KEYWORD sign,easy,mult AUTHOR Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003 EXTENSIONS Edited by Ralf Stephan, Feb 04 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 15 08:24 EST 2018. Contains 317225 sequences. (Running on oeis4.)