login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087204 Period 6: repeat 2,1,-1,-2,-1,1. 6
2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Satisfies (a(n))^2 = a(2n) + 2. Shifted differences of itself.

Multiplicative with a(2^e) = -1, a(3^e) = -2, a(p^e) = 1 otherwise. David W. Wilson Jun 12, 2005.

Moebius transform is length 6 sequence [ 1, -2, -3, 0, 0, 6]. - Michael Somos, Oct 22 2006

REFERENCES

A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 176.

LINKS

Table of n, a(n) for n=0..101.

Tanya Khovanova, Recursive Sequences

Wikipedia, Lucas sequence

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

Index to sequences with linear recurrences with constant coefficients, signature (1,-1).

FORMULA

a(n) = a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 1.

G.f.: (2-x)/(1-x+x^2).

a(n) = Sum(k>=0, (-1)^k*n/(n-k)*C(n-k, k)).

a(n) = (1/2)*((-1)^floor(n/3) + 2*(-1)^floor((n+1)/3) + (-1)^floor((n+2)/3)).

a(n) = -(1/6)*((n mod 6)+2*((n+1) mod 6)+((n+2) mod 6)-((n+3) mod 6)-2*((n+4) mod 6)-((n+5) mod 6)). - Paolo P. Lava, Oct 09 2006

a(n) = a(-n)=-a(n-3). - Michael Somos, Oct 22 2006

E.g.f. 2*exp(x/2)*cos(sqrt(3)*x/2) = 2*G(0) where G(k)= 1 + x/(2*(3*k+1) + 2*x*(3*k+1)/( 3*k+2 - x - 2*x*(3*k+2)/(2*x + 3*(k+1)/G(k+1)))); (continued fraction, 3rd kind, 4-step). - Sergei N. Gladkovskii, Aug 12 2012

a(n) = r^n + s^n, with r=(1+i*sqrt(3))/2 and s=(1-i*sqrt(3))/2 the roots of 1-x+x^2. - Ralf Stephan, Jul 19 2013

EXAMPLE

a(2) = -1 = a(1) - a(0) = 1 - 2 = ((1+sqrt(-3))/2)^2 + ((1-sqrt(-3))/2)^2 = -1 = -2/4 + 2sqrt(-3)/4 - 2/4 -2 sqrt(-3)/4 = -1.

MATHEMATICA

PadLeft[{}, 108, {2, 1, -1, -2, -1, 1}] (* Harvey P. Dale, Sep 11 2011 *)

PROG

(PARI) {a(n)=[2, 1, -1, -2, -1, 1][n%6+1]} /* Michael Somos, Oct 22 2006 */

(Sage) [lucas_number2(n, 1, 1) for n in xrange(0, 102)]# [From Zerinvary Lajos, Apr 30 2009]

CROSSREFS

Essentially the same as A057079 and A100051. Pairwise sums of A010892.

Sequence in context: A131556 A107751 A132367 * A101825 A177702 A131534

Adjacent sequences:  A087201 A087202 A087203 * A087205 A087206 A087207

KEYWORD

sign,easy,mult

AUTHOR

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003

EXTENSIONS

Edited by Ralf Stephan, Feb 04 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 06:09 EST 2014. Contains 252328 sequences.