This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A088911 Period 6: repeat [1, 1, 1, 0, 0, 0]. 19
 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS For periodic sequences having a period of 2*k and composed of k ones followed by k zeros we have a(n) = floor(((n+k) mod 2*k)/k).  Sequences of this form are A000035(n+1) (k=1), A133872(n) (k=2), this sequence (k=3), A131078(n) (k=4), and A112713(n-1) (k=5). [Gary Detlefs, May 17 2011] LINKS Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1). FORMULA G.f.: (1+x+x^2)/(1-x^6) = 1/((1-x)*(1+x)*(1-x+x^2)). a(n) = a(n-6) for n>=6, a(0)=a(1)=a(2)=1, a(3)=a(4)=a(5)=0. a(n) = ((-1)^floor((5*n + 2)/3) + 1)/2 = ( (-1)^floor(n/3) + 1 )/2. [Simplified by Bruno Berselli, Jul 09 2013] a(n) = Sum_{k=0..floor(n/2)} U(n-2k, 1/2). - Paul Barry, Nov 15 2003 From Paul Barry, Mar 14 2004: (Start) Partial sums of expansion of 1/(1+x^3), see A131531. a(n) = 2*sin(Pi*n/3+Pi/6)/3 + cos(Pi*n)/6 + 1/2. (End) a(n) = floor(((n+3) mod 6)/3). a(n) = floor((5*n-1)/3) mod 2. [Gary Detlefs, May 17 2011] a(n) = 1/2 + cos(Pi*n/3)/3 + sin(Pi*n/3)/sqrt(3) + (-1)^n/6. - R. J. Mathar, Oct 08 2011 a(n) = floor(((n+2)^2)/3) mod 2. [Wesley Ivan Hurt, Jun 29 2013] a(n) = A079979(n)+A079979(n-1)+A079979(n-2). - R. J. Mathar, Jul 10 2015 a(n) = a(n-1) - a(n-3) + a(n-4) for n>3. - Wesley Ivan Hurt, Jul 05 2016 MAPLE seq(op([1, 1, 1, 0, 0, 0]), n=0..40); # Wesley Ivan Hurt, Jul 05 2016 MATHEMATICA CoefficientList[Series[(1 + x + x^2)/(1 - x^6), {x, 0, 50}], x] Flatten[Table[{1, 1, 1, 0, 0, 0}, {20}]] (* Harvey P. Dale, Jul 17 2011 *) PROG (PARI) a(n)=n%6<3 \\ Jaume Oliver Lafont, Mar 17 2009 (MAGMA) &cat [[1, 1, 1, 0, 0, 0]^^30]; // Wesley Ivan Hurt, Jul 05 2016 CROSSREFS Cf. A000035, A133872, A131078, A112713. Sequence in context: A267136 A117908 A115360 * A179763 A257341 A284512 Adjacent sequences:  A088908 A088909 A088910 * A088912 A088913 A088914 KEYWORD nonn,easy AUTHOR Mario Catalani (mario.catalani(AT)unito.it), Oct 22 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 12:05 EDT 2019. Contains 328217 sequences. (Running on oeis4.)