login
A112218
McKay-Thompson series of class 102a for the Monster group.
1
1, 1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 3, 2, 2, 4, 3, 4, 5, 5, 5, 7, 6, 7, 9, 9, 9, 12, 11, 13, 15, 15, 16, 20, 19, 22, 25, 26, 27, 33, 32, 36, 41, 42, 44, 52, 52, 57, 64, 66, 70, 81, 82, 89, 99, 103, 109, 123, 125, 136, 150, 156, 165, 185, 189, 204, 223, 233, 247, 273, 281, 302
OFFSET
0,10
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of sqrt(2 + T51A) in powers of q, where T51A = A058704. - G. C. Greubel, Jul 02 2018
a(n) ~ exp(2*Pi*sqrt(2*n/51)) / (2^(3/4) * 51^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 02 2018
EXAMPLE
T102a = 1/q +q +q^5 +q^9 +q^11 +q^13 +q^15 +2*q^17 +q^19 +...
MATHEMATICA
QP := QPochhammer; nmax = 100; f[x_, y_] := QP[-x, x*y]*QP[-y, x*y]*QP[x*y, x*y]; G[x_] := f[-x^2, -x^3]/f[-x, -x^2]; H[x_] := f[-x, -x^4]/f[-x, -x^2]; A := G[x^17]*G[x^3] + x^4*H[x^17]*H[x^3]; B := G[x^51]*H[x] - x^10*H[x^51]*G[x]; T51A := (A*B)/x; a:= CoefficientList[ Series[(x*(2 + T51A) + O[x]^nmax)^(1/2), {x, 0, nmax}], x]; Table[a[[n]], {n, 1, nmax}] (* G. C. Greubel, Jul 02 2018 *)
CROSSREFS
Sequence in context: A324748 A320387 A304707 * A172366 A132148 A237829
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved