login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058703
McKay-Thompson series of class 50a for Monster.
2
1, 0, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 76, 89, 104, 122, 141, 164, 191, 220, 254, 293, 336, 385, 442, 504, 575, 656, 745, 846, 960, 1086, 1228, 1388, 1564, 1762, 1984, 2228, 2501, 2806, 3142, 3516, 3932, 4390, 4898, 5462, 6082, 6768, 7527, 8360, 9280, 10295, 11408, 12634, 13984, 15462
OFFSET
-1,4
COMMENTS
Apart from a(0) same as A034320. [Joerg Arndt, Apr 09 2016]
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
H. D. Nguyen, D. Taggart, Mining the OEIS: Ten Experimental Conjectures, 2013; Mentions this sequence. - From N. J. A. Sloane, Mar 16 2014
FORMULA
G.f.: (E(q^2)*E(q^25))/(E(q)*E(q^50))/q - 1 where E(q) = prod(n>=1, 1 - q^n ). - Joerg Arndt, Apr 09 2016
a(n) ~ exp(2*Pi*sqrt(2*n)/5) / (2^(3/4) * sqrt(5) * n^(3/4)). - Vaclav Kotesovec, Sep 06 2017
EXAMPLE
T50a = 1/q + q + 2*q^2 + 2*q^3 + 3*q^4 + 4*q^5 + 5*q^6 + 6*q^7 + 8*q^8 + ...
MATHEMATICA
nmax = 60; CoefficientList[Series[-x + Product[(1 + x^k)/(1 + x^(25*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 06 2017 *)
eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[-1 + (eta[q^2]*eta[q^25])/(eta[q]*eta[q^50]), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 19 2018*)
PROG
(PARI) N=66; q='q+O('q^N); Vec( (eta(q^2)*eta(q^25))/(eta(q)*eta(q^50))/q - 1 ) \\ Joerg Arndt, Apr 09 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Joerg Arndt, Apr 09 2016
STATUS
approved