login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007260
McKay-Thompson series of class 6a for Monster.
(Formerly M5238)
3
1, -33, -153, -713, -2550, -7479, -20314, -51951, -122229, -276656, -601068, -1254105, -2541531, -5018721, -9647991, -18168984, -33554784, -60818040, -108471674, -190607871, -330140403, -564580142, -953980392, -1593599832, -2634301308, -4311874755, -6991318008
OFFSET
0,2
COMMENTS
A more correct name would be: Expansion of replicable function of class 6a. See Alexander et al., 1992. - N. J. A. Sloane, Jun 12 2015
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..5000 (terms 0..499 from G. A. Edgar)
D. Alexander, C. Cummins, J. McKay and C. Simons, Completely replicable functions, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy.
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.]
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
FORMULA
Expansion of q * ((eta(q^2) / eta(q^6))^6 - 27 * (eta(q^6) / eta(q^2))^6) in powers of q^2. - Michael Somos, Jun 14 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = -1 / f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 14 2015
a(n) = A007262(n) - 27 * A121596(n-1). - Michael Somos, Jun 14 2015
Convolution square is A258917. - Michael Somos, Jun 14 2015
a(n) ~ -exp(2*Pi*sqrt(2*n/3)) / (2^(3/4)*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Sep 08 2017
EXAMPLE
G.f. = 1 - 33*x - 153*x^2 - 713*x^3 - 2550*x^4 - 7479*x^5 - 20314*x^6 + ...
T6a = 1/q - 33*q - 153*q^3 - 713*q^5 - 2550*q^7 - 7479*q^9 - 20314*q^11 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x] / QPochhammer[ x^3])^6 - 27 x (QPochhammer[ x^3] / QPochhammer[ x])^6, {x, 0, n} ]; (* Michael Somos, Jun 14 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^3 + A))^6 - 27 * x * (eta(x^3 + A) / eta(x + A))^6, n))}; /* Michael Somos, Jun 14 2015 */
(PARI) { my(q='q+O('q^66), t=(eta(q)/eta(q^3))^6 ); Vec( t - 27*q/t ) } \\ Joerg Arndt, Apr 02 2017
CROSSREFS
KEYWORD
sign
AUTHOR
STATUS
approved