login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007260 McKay-Thompson series of class 6a for Monster.
(Formerly M5238)
3
1, -33, -153, -713, -2550, -7479, -20314, -51951, -122229, -276656, -601068, -1254105, -2541531, -5018721, -9647991, -18168984, -33554784, -60818040, -108471674, -190607871, -330140403, -564580142, -953980392, -1593599832, -2634301308, -4311874755, -6991318008 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A more correct name would be: Expansion of replicable function of class 6a. See Alexander et al., 1992. - N. J. A. Sloane, Jun 12 2015

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..5000 (terms 0..499 from G. A. Edgar)

D. Alexander, C. Cummins, J. McKay and C. Simons, Completely replicable functions, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy.

J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.]

J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of q * ((eta(q^2) / eta(q^6))^6 - 27 * (eta(q^6) / eta(q^2))^6) in powers of q^2. - Michael Somos, Jun 14 2015

G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = -1 / f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 14 2015

a(n) = A007262(n) - 27 * A121596(n-1). - Michael Somos, Jun 14 2015

Convolution square is A258917. - Michael Somos, Jun 14 2015

a(n) ~ -exp(2*Pi*sqrt(2*n/3)) / (2^(3/4)*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Sep 08 2017

EXAMPLE

G.f. = 1 - 33*x - 153*x^2 - 713*x^3 - 2550*x^4 - 7479*x^5 - 20314*x^6 + ...

T6a = 1/q - 33*q - 153*q^3 - 713*q^5 - 2550*q^7 - 7479*q^9 - 20314*q^11 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ (QPochhammer[ x] / QPochhammer[ x^3])^6 - 27 x (QPochhammer[ x^3] / QPochhammer[ x])^6, {x, 0, n} ]; (* Michael Somos, Jun 14 2015 *)

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^3 + A))^6 - 27 * x * (eta(x^3 + A) / eta(x + A))^6, n))}; /* Michael Somos, Jun 14 2015 */

(PARI) { my(q='q+O('q^66), t=(eta(q)/eta(q^3))^6 ); Vec( t - 27*q/t ) } \\ Joerg Arndt, Apr 02 2017

CROSSREFS

Cf. A007242, A007250, A007262, A121596, A258917.

Sequence in context: A215962 A084028 A283552 * A005904 A207078 A182588

Adjacent sequences: A007257 A007258 A007259 * A007261 A007262 A007263

KEYWORD

sign

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 05:22 EST 2022. Contains 358594 sequences. (Running on oeis4.)