login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007258 McKay-Thompson series of class 6E for Monster (and, apart from signs, of class 12B).
(Formerly M4052)
7
1, 0, 6, 4, -3, -12, -8, 12, 30, 20, -30, -72, -46, 60, 156, 96, -117, -300, -188, 228, 552, 344, -420, -1008, -603, 732, 1770, 1048, -1245, -2976, -1776, 2088, 4908, 2900, -3420, -7992, -4658, 5460, 12756, 7408, -8583, -19944, -11564, 13344, 30756, 17744, -20448, -46944, -26916 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,3

COMMENTS

Also normalized Hauptmodul for Gamma_0(6).

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=-1..47.

J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255-275.

J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.

Morris Newman, Construction and application of a class of modular functions, II, Proc. London Math. Soc. (3) 9 1959 373-387. [Annotated scanned copy, barely legible]

Morris Newman, Construction and application of a class of modular functions (II). Proc. London Math. Soc. (3) 9 1959 373-387.

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of 5 + eta(q)^5*eta(q^3)/(eta(q^2)*eta(q^6)^5) in powers of q.

EXAMPLE

T6E = 1/q + 6*q + 4*q^2 - 3*q^3 - 12*q^4 - 8*q^5 + 12*q^6 + 30*q^7 + ...

MATHEMATICA

QP = QPochhammer; s = 5*q + QP[q]^5*(QP[q^3]/(QP[q^2]*QP[q^6]^5)) + O[q]^50; CoefficientList[s, q] (* Jean-Fran├žois Alcover, Nov 15 2015 *)

CROSSREFS

Essentially same as A045488.

Sequence in context: A268818 A112148 * A045488 A082530 A099404 A095156

Adjacent sequences:  A007255 A007256 A007257 * A007259 A007260 A007261

KEYWORD

sign

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 03:30 EST 2016. Contains 278755 sequences.