

A007258


McKayThompson series of class 6E for Monster (and, apart from signs, of class 12B).
(Formerly M4052)


4



1, 0, 6, 4, 3, 12, 8, 12, 30, 20, 30, 72, 46, 60, 156, 96, 117, 300, 188, 228, 552, 344, 420, 1008, 603, 732, 1770, 1048, 1245, 2976, 1776, 2088, 4908, 2900, 3420, 7992, 4658, 5460, 12756, 7408, 8583, 19944, 11564, 13344, 30756, 17744, 20448, 46944, 26916
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Also normalized Hauptmodul for Gamma_0(6).


REFERENCES

J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308339.
D. Ford, J. McKay and S. P. Norton, ``More on replicable functions,'' Commun. Algebra 22, No. 13, 51755193 (1994).
J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255275.
McKay, John; Strauss, Hubertus. The qseries of monstrous moonshine and the decomposition of the head characters. Comm. Algebra 18 (1990), no. 1, 253278.
Newman, Morris; Construction and application of a class of modular functions. II. Proc. London Math. Soc. (3) 9 1959 373387.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..47.
Index entries for McKayThompson series for Monster simple group


FORMULA

Expansion of 5 + eta(q)^5*eta(q^3)/(eta(q^2)*eta(q^6)^5) in powers of q.


EXAMPLE

T6E = 1/q + 6*q + 4*q^2  3*q^3  12*q^4  8*q^5 + 12*q^6 + 30*q^7 + ...


CROSSREFS

Essentially same as A045488.
Sequence in context: A020794 A112148 * A045488 A082530 A099404 A095156
Adjacent sequences: A007255 A007256 A007257 * A007259 A007260 A007261


KEYWORD

sign


AUTHOR

N. J. A. Sloane.


STATUS

approved



