login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007253 McKay-Thompson series of class 5a for Monster.
(Formerly M4131)
2
1, 0, -6, 20, 15, 36, 0, -84, 195, 100, 240, 0, -461, 1020, 540, 1144, 0, -1980, 4170, 2040, 4275, 0, -6984, 14340, 6940, 14076, 0, -21936, 44025, 20760, 41476, 0, -62484, 123620, 57630, 113244, 0, -166056, 324120, 148900, 289578, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,3

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

G. C. Greubel, Table of n, a(n) for n = -1..1000 (terms -1..100 from G. A. Edgar)

J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.

Index entries for McKay-Thompson series for Monster simple group

FORMULA

G.f.: T5a(q) satisfies functional equation P5(T5a(q)) = j(q^5) - 744, where we used modular function j(q) from A000521 and polynomial P5(t) = t^5+30*t^3-100*t^2+105*t-780. G. A. Edgar, Mar 10 2017

EXAMPLE

T5a = 1/q - 6*q + 20*q^2 + 15*q^3 + 36*q^4 - 84*q^6 + 195*q^7 + 100*q^8 + ...

MAPLE

with(numtheory): TOP := 23;

Order:=101;

g2 := (4/3) * (1 + 240 * add(sigma[ 3 ](n)*q^n, n=1..TOP-1));

g3 := (8/27) * (1 - 504 * add(sigma[ 5 ](n)*q^n, n=1..TOP-1));

delta := series(g2^3 - 27*g3^2, q=0, TOP);

j := series(1728 * g2^3 / delta, q=0, TOP);

# computation above of j is from A000521

P5 := t^5 + 30*t^3 - 100*t^2 + 105*t - 780;

subs(t = q^(-1) + x, P5) - subs(q=q^5, j - 744);

solve(%, x);

T5a := series(q^(-1)+%, q=0) assuming q > 0;

# G. A. Edgar, Mar 10 2017

MATHEMATICA

eta[q_]:= q^(1/24)*QPochhammer[q]; e5B:= (eta[q]/eta[q^5])^6; e25a:= (eta[q]/eta[q^25]);  a[n_]:= SeriesCoefficient[(1 + 5/e25a)*(1 + e5B) + 5*(e25a - 5/e25a)*(e5B/(e25a)^3), {q, 0, n}]; Table[a[n], {n, -1, 50}] (* G. C. Greubel, Jan 25 2018 *)

PROG

(PARI) q='q+O('q^30);  F=(1 + 5*q*eta(q^25)/eta(q))*(1 + (eta(q)/eta(q^5) )^6/q) + 5*(eta(q)/(q*eta(q^25)) - 5*q*eta(q^25)/eta(q))*(q^2* eta(q^25)^3 *eta(q)^3/eta(q^5)^6); Vec(F)  \\ G. C. Greubel, Jun 12 2018

CROSSREFS

Sequence in context: A087998 A096823 A321328 * A096897 A063601 A222604

Adjacent sequences:  A007250 A007251 A007252 * A007254 A007255 A007256

KEYWORD

sign

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from G. A. Edgar, Mar 10 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 03:13 EST 2019. Contains 319260 sequences. (Running on oeis4.)