login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059486
3-enumeration of 2n+1 X 2n+1 vertically symmetric alternating-sign matrices.
4
1, 1, 5, 126, 16038, 10320453, 33590259846, 553104735325740, 46084184498427053436, 19430969437346561065941390, 41463730793298298041665385308325, 447814224393522724673729884056814834500, 24479424309393636290695101063892553945412075000
OFFSET
0,3
LINKS
G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, arXiv:math/0008184 [math.CO], 2000-2001. [Th. 3, but the formula there is incorrect]
J. Propp, The many faces of alternating-sign matrices, Discrete Mathematics and Theoretical Computer Science Proceedings AA (DM-CCG), 2001, 43-58.
FORMULA
a(n) ~ exp(1/36) * Gamma(1/3)^(1/3) * 3^(n*(4*n + 1)/2 + 11/36) * n^(1/36) / (2^(2*n*(n+1) + 7/12) * A^(1/3) * Pi^(1/6)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Feb 24 2019
MAPLE
A059486 := proc(n) local i, j, t1; t1 := 3^(2*n^2)/2^(2*n^2 + n); for i to 2*n + 1 do for j to 2*n + 1 do if i mod 2 <> 0 and j mod 2 = 0 then t1 := t1*(3*j - 3*i + 1)/(3*j - 3*i) end if end do end do; t1 end proc;
e(n)= { local(A); A=Vec((1 - (1 - 9*x + O(x^(2*n + 1)))^(1/3))/(3*x)); matdet(matrix(n, n, i, j, A[i+j]))/3^n; } { for (n = 0, 100, a=e(n); if (a > 10^(10^3 - 6), break); write("b059486.txt", n, " ", a); ) } # Harry J. Smith, Jun 27 2009
MATHEMATICA
a[n_] := Module[{i, j, t1}, t1 = 3^(2*n^2)/2^(2*n^2 + n); For[i = 1, i <= 2*n + 1, i++, For[j = 1, j <= 2*n + 1, j++, If[Mod[i, 2] != 0 && Mod[j, 2] == 0, t1 = t1*(3*j - 3*i + 1)/(3*j - 3*i)]]]; t1];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Nov 23 2017, translated from Maple *)
Table[3^(2*n^2)/2^(2*n^2 + n) * Product[(2 + 6*i - 6*j)/(3 + 6*i - 6*j), {i, 0, n}, {j, 1, n}], {n, 0, 15}] (* Vaclav Kotesovec, Feb 24 2019 *)
PROG
(PARI) a(n)=local(A); if(n<0, 0, A=Vec((1-(1-9*x+O(x^(2*n+1)))^(1/3))/(3*x)); matdet(matrix(n, n, i, j, A[i+j]))/3^n)
(PARI) e(n)= { local(A); A=Vec((1 - (1 - 9*x + O(x^(2*n + 1)))^(1/3))/(3*x)); matdet(matrix(n, n, i, j, A[i+j]))/3^n; } { for (n = 0, 100, a=e(n); if (a > 10^(10^3 - 6), break); write("b059486.txt", n, " ", a); ) } \\ Harry J. Smith, Jun 27 2009
CROSSREFS
Sequence in context: A278080 A156956 A015476 * A071196 A357133 A115233
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 04 2001
STATUS
approved