login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196066 The reverse Wiener index of the rooted tree with Matula-Goebel number n. 0
0, 0, 2, 2, 8, 8, 3, 3, 20, 20, 20, 12, 12, 12, 40, 4, 12, 29, 4, 28, 28, 40, 29, 17, 70, 29, 36, 16, 28, 55, 40, 5, 70, 28, 53, 40, 17, 17, 55, 38, 29, 38, 16, 53, 68, 36, 55, 23, 36, 93, 53, 38, 5, 48, 112, 21, 38, 55, 28, 73, 40, 70, 45, 6, 92, 92, 17, 36, 68, 70, 38, 53, 38, 40, 114, 21, 89, 72, 53, 50 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
The reverse Wiener index of a connected graph is (1/2)N(N-1)D - W, where N, D, and W are, respectively, the number of vertices, the diameter, and the Wiener index of the graph.
The Matula-Goebel number of a rooted tree is defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
REFERENCES
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
A. T. Balaban, D. Mills, O. Ivanciuc, and S. C. Basak, Reverse Wiener indices, Croatica Chemica Acta, 73 (4), 2000, 923-941.
LINKS
FORMULA
a(n)=(1/2)N(n)*(N(n)-1)*d(n) - W(n), where N, d, and W are, respectively, the number of vertices, the diameter, and the Wiener index of the rooted tree with Matula-Goebel number n (all these data are contained in the Wiener polynomial; see A196059). The Maple program is based on the above.
EXAMPLE
a(7)=3 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y with N=4, d=2, W=9 (distances are 1,1,1,2,2,2); (1/2)*4*3*2-9 = 3.
MAPLE
with(numtheory): Wp := proc (n) local r, s, R: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: R := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(x*R(pi(n))+x)) else sort(expand(R(r(n))+R(s(n)))) end if end proc: if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(Wp(pi(n))+x*R(pi(n))+x)) else sort(expand(Wp(r(n))+Wp(s(n))+R(r(n))*R(s(n)))) end if end proc: N := proc (n) options operator, arrow: 1+coeff(Wp(n), x) end proc: d := proc (n) options operator, arrow: degree(Wp(n)) end proc: W := proc (n) options operator, arrow: subs(x = 1, diff(Wp(n), x)) end proc: a := proc (n) options operator, arrow: (1/2)*N(n)*(N(n)-1)*d(n)-W(n) end proc: 0, seq(a(n), n = 2 .. 80);
CROSSREFS
Cf. A196059.
Sequence in context: A195138 A094887 A021441 * A334574 A260825 A330763
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 01 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 16:38 EDT 2024. Contains 371794 sequences. (Running on oeis4.)