

A007008


Chvatal conjecture for radius of graph of maximal intersecting sets.
(Formerly M2484)


3



0, 1, 1, 3, 5, 11, 22, 47, 93, 193, 386, 793, 1586, 3238, 6476, 13167, 26333, 53381, 106762, 215955, 431910, 872218, 1744436, 3518265, 7036530, 14177066, 28354132, 57079714, 114159428, 229656076, 459312152, 923471727, 1846943453, 3711565741, 7423131482
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


REFERENCES

Jan C. Bioch and Toshihide Ibaraki, "Generating and approximating nondominated coteries," IEEE Transactions on parallel and distributed systems 6 (1995), 905914.
A. Meyerowitz, Maximal intersecting families, European J. Combin. 16 (1995), no. 5, 491501.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..35.
D. E. Loeb and A. Meyerowitz, The maximal intersecting family of sets graph, in H. Barcelo and G. Kalai, editors, Proceedings of the Conference on Jerusalem Combinatorics 1993. AMS series Contemporary Mathematics, 1994. [broken link]


FORMULA

It is conjectured that a(2n+1)=A000346(n1) for n>0.  Ralf Stephan, May 03 2004
a(n)=round(2^(n2)binomial(n1,floor((n1)/2))/2), cf. Thm. 14 in the LoebMeyerowitz paper.  M. F. Hasler, Jan 14 2014


PROG

(PARI) A007008(n)=2^n\4binomial(n1, (n1)\2)\2 \\  M. F. Hasler, Jan 14 2014


CROSSREFS

Cf. A000346, A007007, A001206.
Sequence in context: A293338 A168655 A005830 * A018110 A227806 A262431
Adjacent sequences: A007005 A007006 A007007 * A007009 A007010 A007011


KEYWORD

nonn


AUTHOR

Daniel E. Loeb


STATUS

approved



