login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007008 Chvatal conjecture for radius of graph of maximal intersecting sets.
(Formerly M2484)
3
0, 1, 1, 3, 5, 11, 22, 47, 93, 193, 386, 793, 1586, 3238, 6476, 13167, 26333, 53381, 106762, 215955, 431910, 872218, 1744436, 3518265, 7036530, 14177066, 28354132, 57079714, 114159428, 229656076, 459312152, 923471727, 1846943453, 3711565741, 7423131482 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

REFERENCES

Jan C. Bioch and Toshihide Ibaraki, "Generating and approximating nondominated coteries," IEEE Transactions on parallel and distributed systems 6 (1995), 905-914.

A. Meyerowitz, Maximal intersecting families, European J. Combin. 16 (1995), no. 5, 491-501.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..35.

D. E. Loeb and A. Meyerowitz, The maximal intersecting family of sets graph, in H. Barcelo and G. Kalai, editors, Proceedings of the Conference on Jerusalem Combinatorics 1993. AMS series Contemporary Mathematics, 1994. [broken link]

FORMULA

It is conjectured that a(2n+1)=A000346(n-1) for n>0. - Ralf Stephan, May 03 2004

a(n)=round(2^(n-2)-binomial(n-1,floor((n-1)/2))/2), cf. Thm. 14 in the Loeb-Meyerowitz paper. - M. F. Hasler, Jan 14 2014

PROG

(PARI) A007008(n)=2^n\4-binomial(n-1, (n-1)\2)\2 \\ - M. F. Hasler, Jan 14 2014

CROSSREFS

Cf. A000346, A007007, A001206.

Sequence in context: A293338 A168655 A005830 * A018110 A227806 A262431

Adjacent sequences:  A007005 A007006 A007007 * A007009 A007010 A007011

KEYWORD

nonn

AUTHOR

Daniel E. Loeb

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 7 05:20 EDT 2020. Contains 334837 sequences. (Running on oeis4.)