login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112208 McKay-Thompson series of class 72d for the Monster group. 1
1, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, -1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 3, -1, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 5, -1, 0, 0, 0, 0, 6, 2, 0, 0, 0, 0, 7, -2, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,31

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..2500

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of A + q/A, where A = q^(1/2)*(eta(q^12)*eta(q^18)/(eta(q^6)* eta(q^36))), in powers of q. - G. C. Greubel, Jul 02 2018

EXAMPLE

T72d = 1/q +q +q^11 -q^13 +q^23 +q^35 +q^47 +2*q^59 -q^61 +...

MATHEMATICA

eta[q_] := q^(1/24)*QPochhammer[q]; A:= q^(1/2)*(eta[q^12]*eta[q^18]/(eta[q^6]*eta[q^36])); a:= CoefficientList[Series[A + q/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 02 2018 *)

PROG

(PARI) q='q+O('q^80); A = (eta(q^12)*eta(q^18)/(eta(q^6)*eta(q^36))); Vec(A + q/A) \\ G. C. Greubel, Jul 02 2018

CROSSREFS

Sequence in context: A127512 A263787 A112207 * A048158 A275342 A246838

Adjacent sequences:  A112205 A112206 A112207 * A112209 A112210 A112211

KEYWORD

sign

AUTHOR

Michael Somos, Aug 28 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 02:59 EST 2019. Contains 319344 sequences. (Running on oeis4.)