login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058628
McKay-Thompson series of class 31A for Monster.
2
1, 0, 3, 3, 6, 9, 13, 18, 27, 34, 48, 63, 85, 108, 144, 181, 237, 297, 379, 471, 597, 733, 915, 1122, 1385, 1686, 2067, 2498, 3039, 3657, 4415, 5286, 6351, 7565, 9033, 10722, 12741, 15057, 17817, 20973, 24714, 28998, 34033, 39798, 46551, 54262, 63255, 73530
OFFSET
-1,3
COMMENTS
Also McKay-Thompson series of class 31B for Monster.
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
David A. Madore, Coefficients of Moonshine (McKay-Thompson) series, The Math Forum
FORMULA
Expansion of (G(q^31)*H(q) - q^6*H(q^31)*G(q))^3 in powers of q, where G() is g.f. of A003114 and H() is g.f. of A003106. - G. C. Greubel, Jun 29 2018
Expansion of (T93A)^3 in powers of q, where T93A = A112217. - G. C. Greubel, Jun 29 2018
a(n) ~ exp(4*Pi*sqrt(n/31)) / (sqrt(2) * 31^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 29 2018
EXAMPLE
T31A = 1/q + 3*q + 3*q^2 + 6*q^3 + 9*q^4 + 13*q^5 + 18*q^6 + 27*q^7 + ...
MATHEMATICA
QP := QPochhammer; f[x_, y_] := QP[-x, x*y]*QP[-y, x*y]*QP[x*y, x*y]; G[x_] := f[-x^2, -x^3]/f[-x, -x^2]; H[x_] := f[-x, -x^4]/f[-x, -x^2]; B:= G[x^31]*H[x] - x^6*H[x^31]*G[x]; a:= CoefficientList[Series[B^3, {x, 0, 50}], x]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 29 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 20 2014
STATUS
approved