login
A112207
McKay-Thompson series of class 72c for the Monster group.
1
1, -1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 2, -1, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 3, -1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0, 6, -2, 0, 0, 0, 0, 7, 2, 0, 0, 0, 0, 8, -1, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 10, -1, 0, 0, 0, 0
OFFSET
0,31
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of A - q/A, where A = q^(1/2)*(eta(q^12)*eta(q^18)/(eta(q^6)* eta(q^36))), in powers of q. - G. C. Greubel, Jul 02 2018
EXAMPLE
T72c = 1/q -q +q^11 +q^13 +q^23 +q^35 +q^47 +2*q^59 +q^61 +...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; A:= q^(1/2)*(eta[q^12]*eta[q^18]/(eta[q^6]*eta[q^36])); a:= CoefficientList[Series[A - q/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 02 2018 *)
PROG
(PARI) q='q+O('q^80); A = (eta(q^12)*eta(q^18)/(eta(q^6)* eta(q^36))); Vec(A - q/A) \\ G. C. Greubel, Jul 02 2018
CROSSREFS
Sequence in context: A127512 A263787 A307710 * A112208 A339089 A048158
KEYWORD
sign
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved