This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212625 Number of vertices in the largest independent vertex subset of the rooted tree with Matula-Goebel number n. 11
 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 3, 3, 4, 4, 3, 4, 4, 4, 4, 3, 5, 4, 4, 4, 4, 4, 4, 4, 5, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 5, 4, 4, 5, 4, 4, 5, 6, 4, 4, 4, 5, 4, 5, 5, 5, 4, 4, 5, 5, 5, 4, 4, 6, 5, 4, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 4, 4, 5, 6, 5, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS A vertex subset in a tree is said to be independent if no pair of vertices is connected by an edge. The empty set is considered to be independent. The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. REFERENCES F. Goebel, On a 1-1 correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143. I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142. I. Gutman and Y-N. Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22. D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273. LINKS E. Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288. FORMULA In A212623 one finds the generating polynomial P(n,x) with respect to the number of vertices of the independent vertex subsets of the rooted tree with Matula-Goebel number n. We have a(n)=degree(P(n,x)). EXAMPLE a(5)=2 because the rooted tree with Matula-Goebel number 5 is the path tree R - A - B - C with independent vertex subsets: {}, {R}, {A}, {B}, {C}, {R,B}, {R,C}, {A,C}; their sizes are 0,1,and 2. MAPLE with(numtheory): A := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [x, 1] elif bigomega(n) = 1 then [expand(x*A(pi(n))[2]), expand(A(pi(n))[1])+A(pi(n))[2]] else [sort(expand(A(r(n))[1]*A(s(n))[1]/x)), sort(expand(A(r(n))[2]*A(s(n))[2]))] end if end proc: P := proc (n) options operator, arrow: sort(A(n)[1]+A(n)[2]) end proc: a := proc (n) options operator, arrow: degree(P(n)) end proc: seq(a(n), n = 1 .. 120); CROSSREFS Cf. A212618, A212619, A212620, A212621, A212622, A212623, A212624, A212626, A212627, A212628, A212629, A212630, A212631, A212632. Sequence in context: A156875 A066339 A052375 * A171626 A074279 A072750 Adjacent sequences:  A212622 A212623 A212624 * A212626 A212627 A212628 KEYWORD nonn AUTHOR Emeric Deutsch, Jun 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 14:40 EST 2019. Contains 319333 sequences. (Running on oeis4.)