This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206493 Product, over all vertices v of the rooted tree with Matula-Goebel number n, of the number of vertices in the subtree with root v. 2
 1, 2, 6, 3, 24, 8, 12, 4, 20, 30, 120, 10, 40, 15, 72, 5, 60, 24, 20, 36, 36, 144, 120, 12, 252, 48, 56, 18, 180, 84, 720, 6, 336, 72, 126, 28, 60, 24, 112, 42, 240, 42, 90, 168, 192, 140, 504, 14, 63, 288, 168, 56, 30, 64, 1152, 21, 56, 210, 360, 96, 168, 840, 96, 7, 384 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is called tree factorial. See, for example, the Brouder reference. The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. LINKS Ch. Brouder, Runge-Kutta methods and renormalization, arXiv:hep-th/9904014, 1999; Eur. Phys. J. C 12, 2000, 521-534. E. Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011. J. Fulman, Mixing time for a random walk on rooted trees, The Electronic J. of Combinatorics, 16, 2009, R139. F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143. I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142. I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22. D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273. FORMULA Denote by V(k) the number of vertices of the rooted tree with Matula-Goebel number k. If n is the m-th prime, then a(n) = a(m)*V(n); if n=rs, r,s>=2, then a(n) = a(r)a(s)V(n)/{V(r)V(s)}. The Maple program is based on these recurrence relations. EXAMPLE a(7)=12 because the rooted tree with Matula-Goebel number 7 is Y; denoting the vertices in preorder by a,b,c, and d, the number of vertices of the subtrees having these roots are 4, 3, 1, and 1, respectively. a(11)=120 because the rooted tree with Matula-Goebel number 11 is the path tree on 5 vertices; the subtrees have 5,4,3,2,1 vertices. MAPLE with(numtheory): V := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+V(pi(n)) else V(r(n))+V(s(n))-1 end if end proc: H := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then V(n)*H(pi(n)) else H(r(n))*H(s(n))*V(n)/(V(r(n))*V(s(n))) end if end proc: seq(H(n), n = 1 .. 100); CROSSREFS Sequence in context: A050125 A178667 A281881 * A304085 A302783 A008306 Adjacent sequences:  A206490 A206491 A206492 * A206494 A206495 A206496 KEYWORD nonn AUTHOR Emeric Deutsch, May 10 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 05:29 EDT 2019. Contains 328315 sequences. (Running on oeis4.)