OFFSET
1,1
COMMENTS
The only even terms are 2, 4 and 6 because 2 = 1 + (sum of digits of 1), 4 = 2 + (sum of digits of 2), 6 = 3 + (sum of digits of 3) so these integers are not Colombian then also, because an even number is Brazilian iff it is >= 8.
LINKS
Giovanni Resta, Self or Colombian number, Numbers Aplenty.
Wikipédia, Nombre brésilien.
Wikipedia, Partition of a set.
EXAMPLE
For b = 17, there is no repdigit in some base b < 16 equal to 17, hence 17 is not Brazilian and 17 = 13 + (sum of digits of 13) hence 17 is not Colombian, so 17 is a term.
MATHEMATICA
brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[ Union[ IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; n = 300; Select[Union @ Table[Plus @@ IntegerDigits[k] + k, {k, 1, n}], # <= n && !brazQ[#] &] (* Amiram Eldar, Jul 17 2020 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jul 17 2020
STATUS
approved