login
A326379
Numbers m such that beta(m) = tau(m)/2 - 1 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.
8
2, 3, 5, 8, 10, 11, 14, 17, 18, 19, 22, 23, 24, 27, 28, 29, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 65, 66, 67, 68, 69, 70, 71, 74, 75, 76, 77, 78, 79, 82, 83, 84, 87, 88, 89, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 113, 115, 116
OFFSET
1,1
COMMENTS
As tau(m) = 2 * (1 + beta(m)), the terms of this sequence are not squares. Indeed, there are 3 subsequences which realize a partition of this sequence (see examples):
1) Non-oblong composites which have no Brazilian representation with three digits or more, they form A326386.
2) Oblong numbers that have only one Brazilian representation with three digits or more. These oblong integers are a subsequence of A167782 and form A326384.
3) Non Brazilian primes, then beta(p) = tau(p)/2 - 1 = 0.
EXAMPLE
One example for each type:
10 = 22_4 and tau(10) = 4 with beta(10) = 1.
42 = 6 * 7 = 222_4 = 33_13 = 22_20 and tau(42) = 8 with beta(42) = 3.
17 is no Brazilian prime with tau(17) = 2 and beta(17) = 0.
PROG
(PARI) beta(n) = sum(i=2, n-2, #vecsort(digits(n, i), , 8)==1); \\ A220136
isok(n) = beta(n) == numdiv(n)/2 - 1; \\ Michel Marcus, Jul 03 2019
CROSSREFS
Cf. A000005 (tau), A220136 (beta).
Cf. A220627 (subsequence of non Brazilian primes).
Cf. A326378 (tau(m)/2 - 2), A326380 (tau(m)/2), A326381 (tau(m)/2 + 1), A326382 (tau(m)/2 + 2), A326383 (tau(m)/2 + 3).
Sequence in context: A295085 A153000 A222172 * A099107 A261255 A085833
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jul 03 2019
STATUS
approved