

A326378


Numbers m such that beta(m) = tau(m)/2  2 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.


10



6, 12, 20, 30, 56, 72, 90, 110, 132, 210, 240, 272, 306, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1482, 1560, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, 2550, 2652, 2756, 2862, 2970, 3080, 3192, 3306, 3422, 3540, 3660, 3782
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

As tau(m) = 2 * (2 + beta(m)), the terms of this sequence are not squares. Indeed, there exists only one family that satisfies this relation and these integers are exactly the oblong numbers that have no Brazilian representation with three digits or more.
There are no integers such as beta(m) = tau(m)/2  q with q >= 3.


LINKS

Table of n, a(n) for n=1..54.
Bernard Schott, Relation beta = f(tau)
Index entries for sequences related to Brazilian numbers


EXAMPLE

1) tau(m) = 4 and beta(m) = 0: m = 6 which is not Brazilian.
2) tau(m) = 6 and beta(m) = 1: m = 12, 20.
12 = 3 * 4 = 22_5, 20 = 4 * 5 = 22_9.
3) tau(m) = 8 and beta(m) = 2: m = 30, 56, 110, 506, 2162, 3422, ...
30 = 5 * 6 = 33_9 = 22_14, 56 = 7 * 8 = 44_13 = 22_27.
4) tau(m) = 10 and beta(m) = 3: m = 272, ...
272 = 16 * 17 = 88_32 = 44_67 = 22_135.
5) tau(m) = 12 and beta(m) = 4: m = 72, 90, 132, 306, 380, 650, 812, 992, ...
72 = 8 * 9 = 66_11 = 44_17 = 33_23 = 22_35.


PROG

(PARI) beta(n) = sum(i=2, n2, #vecsort(digits(n, i), , 8)==1); \\ A220136
isok(n) = beta(n) == numdiv(n)/2  2; \\ Michel Marcus, Jul 08 2019


CROSSREFS

Cf. A000005 (tau), A220136 (beta).
Subsequence of A002378 (oblong numbers).
Cf. A326379 (tau(m)/2  1), A326380 (tau(m)/2), A326381 (tau(m)/2 + 1), A326382 (tau(m)/2 + 2), A326383 (tau(m)/2 + 3).
Cf. A326384 (oblongs with tau(m)/2  1), A326385 (oblongs with tau(m)/2).
Sequence in context: A007622 A180291 A056930 * A064971 A130199 A295904
Adjacent sequences: A326375 A326376 A326377 * A326379 A326380 A326381


KEYWORD

nonn,base


AUTHOR

Bernard Schott, Jul 02 2019


STATUS

approved



