login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000472 a(n) = a(n-1)^2 + (a(n-2) + 1)(a(n-1) - a(n-2)^2 ). 1
2, 5, 28, 802, 643726, 414383582242, 171713753231982206218246, 29485613049014079571725771288849499850026859242 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

Damiani, E.; D'Antona, O.; Naldi, G.; and Pavarino, L.; Tiling bricks with bricks. Stud. Appl. Math. 83 (1990), number 2, 91-110.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..14

Index entries for sequences related to bricks

MAPLE

A000472 := proc(n) option remember; if n<=2 then 3*n-1 else A000472(n-1)^2+(1+A000472(n-2))*(A000472(n-1)-A000472(n-2)^2); fi; end;

MATHEMATICA

RecurrenceTable[{a[1]==2, a[2]==5, a[n]==a[n-1]^2+(a[n-2]+1)(a[n-1]- a[n-2]^2)}, a[n], {n, 10}] (* Harvey P. Dale, Sep 29 2011 *)

PROG

(MAGMA) I:=[2, 5]; [n le 2 select I[n] else  Self(n-1)^2 + (Self(n-2)+1)*(Self(n-1)-Self(n-2)^2 ): n in [1..10]]; // Vincenzo Librandi, Sep 30 2011

(Haskell)

a000472 n = a000472_list !! (n-1)

a000472_list = 2 : 5 : zipWith (+) (map (^ 2) $ tail a000472_list)

   (zipWith (*) (map (+ 1) a000472_list)

                (zipWith (-) (tail a000472_list)

                             (map (^ 2) a000472_list)))

-- Reinhard Zumkeller, Oct 03 2012

CROSSREFS

Sequence in context: A292499 A105787 A110497 * A248235 A049050 A178322

Adjacent sequences:  A000469 A000470 A000471 * A000473 A000474 A000475

KEYWORD

nonn,nice,easy

AUTHOR

Ottavio D'Antona [ dantona(AT)hermes.dsi.unimi.it ]

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 15:27 EST 2017. Contains 295089 sequences.