login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037481
Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
15
0, 1, 6, 25, 102, 409, 1638, 6553, 26214, 104857, 419430, 1677721, 6710886, 26843545, 107374182, 429496729, 1717986918, 6871947673, 27487790694, 109951162777, 439804651110, 1759218604441, 7036874417766, 28147497671065
OFFSET
0,3
COMMENTS
The terms have a particular pattern in their binary expansion, which encodes for a "triangular partition" when runlength encoding of unordered partitions are used (please see A129594 for how that encoding works).
n a(n) same in binary run lengths unordered partition
0 0 0 [] {}
1 1 1 [1] {1}
2 6 110 [2,1] {1+2}
3 25 11001 [2,2,1] {1+2+3}
4 102 1100110 [2,2,2,1] {1+2+3+4}
5 409 110011001 [2,2,2,2,1] {1+2+3+4+5}
6 1638 11001100110 [2,2,2,2,2,1] {1+2+3+4+5+6}
7 6553 1100110011001 [2,2,2,2,2,2,1] {1+2+3+4+5+6+7}
8 26214 110011001100110 [2,2,2,2,2,2,2,1] {1+2+3+4+5+6+7+8}
9 104857 11001100110011001 [2,2,2,2,2,2,2,2,1] {1+2+3+4+5+6+7+8+9}
These partitions are the only fixed points of "Bulgarian Solitaire" operation (see Gardner reference or Wikipedia page), and thus the terms of this sequence give the fixed points for A226062 which implements that operation (using the same encoding for partitions). This also implies that these partitions are the roots of the game trees constructed for decks consisting of 1+2+3+...+k cards. See A227451 for the encoding of the corresponding tops of the main trunks of the same trees. - Antti Karttunen, Jul 12 2013
REFERENCES
Martin Gardner, Colossal Book of Mathematics, Chapter 34, Bulgarian Solitaire and Other Seemingly Endless Tasks, pp. 455-467, W. W. Norton & Company, 2001.
FORMULA
a(n) = ((4^(n+1) - (-1)^(n+1))/5 - 1)/2. - Ralf Stephan
a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3). - Vincenzo Librandi, Jun 21 2012
a(n) = A226062(A129594(A227451(n))). [See page 465 in Gardner's book] - Antti Karttunen, Jul 12 2013
G.f.: x*(2*x+1) / ((x-1)*(x+1)*(4*x-1)). - Colin Barker, Apr 30 2014
MATHEMATICA
LinearRecurrence[{4, 1, -4}, {0, 1, 6}, 40] (* Vincenzo Librandi, Jun 21 2012 *)
Module[{nn=30, ps}, ps=PadRight[{}, nn, {1, 2}]; Table[FromDigits[Take[ps, n], 4], {n, 0, nn}]] (* Harvey P. Dale, Jul 18 2013 *)
PROG
(Magma) I:=[0, 1, 6]; [n le 3 select I[n] else 4*Self(n-1)+Self(n-2)-4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 21 2012
(Scheme) (define (A037481 n) (/ (- (/ (+ (expt 4 (1+ n)) (expt -1 n)) 5) 1) 2)) ;; Using Ralf Stephan's direct formula - Antti Karttunen, Jul 12 2013
(PARI) concat(0, Vec(x*(2*x+1)/((x-1)*(x+1)*(4*x-1)) + O(x^100))) \\ Colin Barker, Apr 30 2014
(PARI) a(n) = 2<<(2*n) \ 5; \\ Kevin Ryde, Jun 24 2023
(Python)
def A037481(n): return (1<<(n<<1|1))//5 # Chai Wah Wu, Jun 28 2023
CROSSREFS
Cf. A037487 (decimal digits 1,2).
The right edge of the table A227452. The fixed points of A226062.
Sequence in context: A323824 A037537 A253220 * A199844 A267536 A029871
KEYWORD
nonn,base,easy
STATUS
approved