login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015521 a(n) = 3*a(n-1) + 4*a(n-2), a(0) = 0, a(1) = 1. 50
0, 1, 3, 13, 51, 205, 819, 3277, 13107, 52429, 209715, 838861, 3355443, 13421773, 53687091, 214748365, 858993459, 3435973837, 13743895347, 54975581389, 219902325555, 879609302221, 3518437208883, 14073748835533 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Inverse binomial transform of powers of 5 (A000351) preceded by 0. - Paul Barry, Apr 02 2003

Number of walks of length n between any two distinct vertices of the complete graph K_5. Example: a(2)=3 because the walks of length 2 between the vertices A and B of the complete graph ABCDE are: ACB, ADB, AEB. - Emeric Deutsch, Apr 01 2004

The terms of the sequence are the number of segments (sides) per iteration of the space-filling Peano-Hilbert curve. - Giorgio Balzarotti, Mar 16 2006

General form: k=4^n-k. Also: A001045, A078008, A097073, A115341, A015518, A054878. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008

A further inverse binomial transform generates A015441. - Paul Curtz, Nov 01 2009

For n>=2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 3's along the central diagonal, and 2's along the subdiagonal and the superdiagonal. - John M. Campbell, Jul 19 2011

Pisano period lengths: 1, 1, 2, 2, 10, 2, 6, 2, 6, 10, 10, 2, 6, 6, 10, 2, 4, 6, 18, 10, ... - R. J. Mathar, Aug 10 2012

Sum( (-1)^(m+i)*4^i, i=0..m ), for m>=0, gives the terms after 0. - Bruno Berselli, Aug 28 2013

The ratio a(n+1)/a(n) converges to 4 as n approaches infinity. - Felix P. Muga II, Mar 09 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

E. M. García-Caballero, S. G. Moreno, M. P. Prophet, A complete view of Viète-like infinite products with Fibonacci and Lucas numbers, Applied Mathematics and Computation 247 (2014) 703-711.

Dale Gerdemann, Fractal generated from (3,4) recursion A015521, YouTube Video, Dec 4, 2014.

F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.

Index entries for linear recurrences with constant coefficients, signature (3,4).

FORMULA

a(n) = 4^n/5-(-1)^n/5. E.g.f.: (exp(4*x)-exp(-x))/5. - Paul Barry, Apr 02 2003

a(n) = sum{k=1..n, binomial(n, k)(-1)^(n+k)*5^(k-1) }. - Paul Barry, May 13 2003

a(2*n) = 4*a(2*n-1) -1, a(2*n+1) = 4*a(2*n) +1. In general this is true for all sequences of the type a(n) +a(n+1) = q^(n): i.e., a(2*n) = q*a(2n-1) - 1 and a(2*n+1) = q*a(2*n) + 1. - Amarnath Murthy, Jul 15 2003

a(n) = 4^(n-1) - a(n-1). G.f.: x/(1-3*x-4*x^2). - Emeric Deutsch, Apr 01 2004

a(n+1) = sum{k=0..floor(n/2), binomial(n-k, k)*3^(n-2k)*4^k}. - Paul Barry, Jul 29 2004

a(n) = 4*a(n-1)-(-1)^n, n>0, a(0)=0. - Paul Barry, Aug 25 2004

a(n) = Sum_{k, 0<=k<=n} A155161(n,k)*2^(n-k), n>=1. - Philippe Deléham, Jan 27 2009

a(n) = round(4^n/5). - Mircea Merca, Dec 28 2010

The logarithmic generating function 1/5*log((1+x)/(1-4*x)) = x + 3*x^2/2 + 13*x^3/3 + 51*x^4/4 + ... has compositional inverse 5/(4+exp(-5*x)) - 1, the e.g.f. for a signed version of A213127. - Peter Bala, Jun 24 2012

a(n) = (-1)^(n-1)*sum(k=0,..,n-1, A135278(n-1,k)*(-5)^k) = [4^n-(-1)^n]/5 = (-1)^(n-1)*sum(k=0,..,n-1, (-4)^k). Equals (-1)^(n-1)*Phi(n,-4), where Phi is the cyclotomic polynomial when n is an odd prime. (For n>0.) - Tom Copeland, Apr 14 2014

a(n+1) = 2^(2*n)-a(n), a(0) = 0. - Ben Paul Thurston, Dec 25 2015

a(n) = A247281(n)/5. - Altug Alkan, Jan 08 2016

EXAMPLE

G.f. = x + 3*x^2 + 13*x^3 + 51*x^4 + 205*x^5 + 819*x^6 + 3277*x^7 + 13107*x^8 + ...

MAPLE

seq(round(4^n/5), n=0..25) # Mircea Merca, Dec 28 2010

MATHEMATICA

k=0; lst={k}; Do[k=4^n-k; AppendTo[lst, k], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)

LinearRecurrence[{3, 4}, {0, 1}, 30] (* Harvey P. Dale, Jun 26 2012 *)

CoefficientList[Series[x/((1 - 4 x) (1 + x)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)

PROG

(Sage) [lucas_number1(n, 3, -4) for n in xrange(0, 24)] # Zerinvary Lajos, Apr 22 2009

(MAGMA) [Floor(4^n/5-(-1)^n/5): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011

(PARI) a(n) = 4^n/5-(-1)^n/5; \\ Altug Alkan, Jan 08 2016

CROSSREFS

Cf. A001045, A015518, A054878, A078008, A097073, A109200, A115341, A201455, A213127, A247281.

Sequence in context: A244784 A197074 A014985 * A270913 A146279 A098619

Adjacent sequences:  A015518 A015519 A015520 * A015522 A015523 A015524

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 05:11 EST 2016. Contains 278748 sequences.