This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A253260 Brazilian squares. 3
 16, 36, 64, 81, 100, 121, 144, 196, 225, 256, 324, 400, 441, 484, 576, 625, 676, 729, 784, 900, 1024, 1089, 1156, 1225, 1296, 1444, 1521, 1600, 1764, 1936, 2025, 2116, 2304, 2401, 2500, 2601, 2704, 2916, 3025, 3136, 3249, 3364, 3600, 3844, 3969, 4096, 4225, 4356, 4624, 4761, 4900, 5184 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Trivially, all even squares > 4 will be in this sequence. The only square of a prime which is Brazilian is 121. - Bernard Schott, May 01 2017 Intersection of A000290 and A125134. - Felix Fröhlich, May 01 2017 Conjecture: Let r(n) = (a(n) - 1)/(a(n) + 1); then Product_{n>=1} r(n) = (15/17) * (35/37) * (63/65) * (40/41) * (99/101) * (60/61) * (143/145) * (195/197) * ... = (150 * Pi) / (61 * sinh(Pi)) = 0.668923905.... - Dimitris Valianatos, Feb 27 2019 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..405 Bernard Schott, Les nombres brésiliens Quadrature, no. 76, avril-juin 2010, théorème 5, page 37. EXAMPLE From Bernard Schott, May 01 2017: (Start) a(1) = 16 = 4^2 = 22_7. a(6) = 121 = 11^2 = 11111_3. (End) MATHEMATICA fQ[n_]:=Module[{b=2, found=False}, While[b1, b++]; b

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 04:40 EDT 2019. Contains 328211 sequences. (Running on oeis4.)