OFFSET
0,2
COMMENTS
"Necklaces with turning over allowed" are usually called bracelets. - Joerg Arndt, Jun 10 2016
REFERENCES
J. L. Fisher, Application-Oriented Algebra (1977), ISBN 0-7002-2504-8, circa p. 215.
Martin Gardner, "New Mathematical Diversions from Scientific American" (Simon and Schuster, New York, 1966), pages 245-246.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..300
Hoda Abbasizanjani and Oliver Kullmann, Classification of minimally unsatisfiable 2-CNFs, arXiv:2003.03639 [cs.DM], 2020.
Joerg Arndt, Matters Computational (The Fxtbook), p. 151
Henry Bottomley, Illustration of initial terms
Emanuele Brugnoli, Enumerating the Walecki-Type Hamiltonian Cycle Systems, Journal of Combinatorial Designs, Volume 25, Issue 11, November 2017, pp. 481-493.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
S. N. Ethier and J. Lee, Parrondo games with spatial dependence, arXiv preprint arXiv:1202.2609 [math.PR], 2012. - From N. J. A. Sloane, Jun 10 2012
S. N. Ethier and J. Lee, Parrondo games with spatial dependence II, Fluctuation and Noise Letters 11 (4) (2012), 1250030.
S. N. Ethier, Counting toroidal binary arrays, arXiv preprint arXiv:1301.2352 [math.CO], 2013.
S. N. Ethier, Counting toroidal binary arrays, Journal of Integer Sequences 16 (2013), Article 13.4.7.
N. J. Fine, Classes of periodic sequences, Illinois J. Math., 2 (1958), 285-302.
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
Jurij Kovič, Regular polygonal systems, Ars Mathematica Contemporanea (2019) Vol. 16, No. 2, 157-171.
Jia Liu, L. Lalouat, E. Drouard, and R. Orobtchouk, Binary coded patterns for photon control using necklace problem concept, Optics Express Vol. 24, Issue 2, pp. 1133-1142 (2016).
Frank Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
Frank Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
Zhe Sun, T. Suenaga, P. Sarkar, S. Sato, M. Kotani, and H. Isobe, Stereoisomerism, crystal structures, and dynamics of belt-shaped cyclonaphthylenes, Proc. Nat. Acad. Sci. USA, vol. 113 no. 29, pp. 8109-8114, doi: 10.1073/pnas.1606530113.
James Tilley, Stan Wagon, and Eric Weisstein, A Catalog of Facially Complete Graphs, arXiv:2409.11249 [math.CO], 2024. See p. 11.
A. M. Uludag, A. Zeytin and M. Durmus, Binary Quadratic Forms as Dessins, 2012. - From N. J. A. Sloane, Dec 31 2012
Eric Weisstein's World of Mathematics, Necklace
Eric Weisstein's World of Mathematics, e
FORMULA
a(n) = Sum_{d divides n} phi(d)*2^(n/d)/(2*n) + either 2^((n - 1)/2) if n odd or 2^(n/2 - 1) + 2^(n/2 - 2) if n even.
G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 2*x^n)/n + (1 + x)^2/(1 - 2*x^2))/2. - Herbert Kociemba, Nov 02 2016
Equals (A000031 + A164090) / 2 = A000031 - A059076 = A059076 + A164090. - Robert A. Russell, Sep 24 2018
From Richard L. Ollerton, May 04 2021: (Start)
a(0) = 1; a(n) = Sum_{k=1..n} 2^gcd(n,k)/(2*n) + either 2^((n - 1)/2) if n odd or 2^(n/2 - 1) + 2^(n/2 - 2) if n even.
EXAMPLE
For n=2, the three bracelets are AA, AB, and BB. For n=3, the four bracelets are AAA, AAB, ABB, and BBB. - Robert A. Russell, Sep 24 2018
MAPLE
with(numtheory): A000029 := proc(n) local d, s; if n = 0 then return 1 else if n mod 2 = 1 then s := 2^((n-1)/2) else s := 2^(n/2-2)+2^(n/2-1) fi; for d in divisors(n) do s := s+phi(d)*2^(n/d)/(2*n) od; return s; fi end:
MATHEMATICA
a[0] := 1; a[n_] := Fold[#1 + EulerPhi[#2]2^(n/#2)/(2n) &, If[OddQ[n], 2^((n - 1)/2), 2^(n/2 - 1) + 2^(n/2 - 2)], Divisors[n]]
mx=40; CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-2*x^n]/n, {n, mx}]+(1+x)^2/(1-2*x^2))/2, {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
a[0] = 1; a[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#)&]/(2*n); Array[a, 36, 0] (* Jean-François Alcover, Nov 05 2017 *)
PROG
(PARI) a(n)=if(n<1, !n, (n%2+3)/4*2^(n\2)+sumdiv(n, d, eulerphi(n/d)*2^d)/2/n)
(Python)
from sympy import divisors, totient
def a(n):
return 1 if n<1 else ((2**(n//2+1) if n%2 else 3*2**(n//2-1)) + sum(totient(n//d)*2**d for d in divisors(n))//n)//2
print([a(n) for n in range(51)]) # Indranil Ghosh, Apr 23 2017
CROSSREFS
KEYWORD
nonn,easy,nice,core
AUTHOR
EXTENSIONS
More terms from Christian G. Bower
STATUS
approved