

A000750


Expansion of bracket function.
(Formerly M3851 N1576)


6



1, 5, 15, 35, 70, 125, 200, 275, 275, 0, 1000, 3625, 9500, 21250, 42500, 76875, 124375, 171875, 171875, 0, 621875, 2250000, 5890625, 13171875, 26343750, 47656250, 77109375, 106562500, 106562500, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

It appears that the (unsigned) sequence is identical to its 5th order absolute difference.  John W. Layman, Sep 23 2003


REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=0..29.
H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241260.


FORMULA

G.f.: 1/((1+x)^5x^5).


MATHEMATICA

LinearRecurrence[{5, 10, 10, 5}, {1, 5, 15, 35}, 30] (* JeanFrançois Alcover, Feb 11 2016 *)


PROG

(PARI) Vec(1/((1+x)^5x^5) + O(x^40)) \\ Michel Marcus, Feb 11 2016


CROSSREFS

Cf. A000748, A000749, A001659, A006090, A049016.
Sequence in context: A069983 A005894 A015622 * A008487 A000743 A138779
Adjacent sequences: A000747 A000748 A000749 * A000751 A000752 A000753


KEYWORD

sign,easy


AUTHOR

N. J. A. Sloane.


STATUS

approved



