This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007148 Number of self-complementary 2-colored bracelets (turn over necklaces) with 2n beads. (Formerly M0774) 8
 1, 2, 3, 6, 10, 20, 37, 74, 143, 284, 559, 1114, 2206, 4394, 8740, 17418, 34696, 69194, 137971, 275280, 549258, 1096286, 2188333, 4369162, 8724154, 17422652, 34797199, 69505908, 138845926, 277383872, 554189329, 1107297290, 2212558942 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 E. M. Palmer and R. W. Robinson, Enumeration of self-dual configurations Pacific J. Math., 110 (1984), 203-221. F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only] FORMULA a(n) = 2^(n-2) + (1/(4n)) * Sum_{d|n} phi(2d)*2^(n/d). - N. J. A. Sloane, Sep 25 2012 a(n) = (1/2)*(A000079(n-1) + A000013(n)). MAPLE # see A245558 L := proc(n, k)     local a, j ;     a := 0 ;     for j in numtheory[divisors](igcd(n, k)) do         a := a+numtheory[mobius](j)*binomial(n/j, k/j) ;     end do:     a/n ; end proc: A007148 := proc(n)     local a, k, l;     a := 0 ;     for k from 1 to n do         for l in numtheory[divisors](igcd(n, k)) do             a := a+L(n/l, k/l)*ceil(k/2/l) ;         end do:     end do:     a; end proc: seq(A007148(n), n=1..20) ; # R. J. Mathar, Jul 23 2017 MATHEMATICA a[n_] := (1/2)*(2^(n-1) + Total[ EulerPhi[2*#]*2^(n/#) &  /@ Divisors[n]]/(2*n)); Table[ a[n], {n, 1, 33}] (* Jean-François Alcover, Oct 25 2011 *) PROG (PARI) a(n)= (1/2) *(2^(n-1)+sumdiv(n, k, eulerphi(2*k)*2^(n/k))/(2*n)) (Python) from sympy import divisors, totient def a(n): return 2**(n - 2) + sum([totient(2*d)*2**(n/d) for d in divisors(n)])/(4*n) print map(a, xrange(1, 51)) # Indranil Ghosh, Jul 24 2017 CROSSREFS Cf. A000013, A000079, A007147. Different from, but easily confused with, A045690 and A093371. Sequence in context: A164047 A158291 A045690 * A093371 A003214 A123423 Adjacent sequences:  A007145 A007146 A007147 * A007149 A007150 A007151 KEYWORD nonn,nice,easy AUTHOR EXTENSIONS Description corrected by Christian G. Bower STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 18 12:36 EST 2018. Contains 318229 sequences. (Running on oeis4.)