login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065509
Primes p such that p^4 + p^3 + p^2 + p + 1 is prime.
7
2, 7, 13, 17, 23, 29, 43, 73, 79, 83, 127, 193, 227, 239, 263, 277, 337, 359, 373, 397, 439, 457, 479, 503, 557, 563, 617, 919, 967, 1009, 1129, 1187, 1249, 1297, 1327, 1429, 1493, 1553, 1579, 1657, 1663, 1979, 1987, 2069, 2243, 2383, 2617, 2663, 2789
OFFSET
1,1
COMMENTS
Primes in A049409. - Vincenzo Librandi, Aug 07 2010
The generated prime numbers are in A190527. - Bernard Schott, Dec 20 2012
LINKS
Jon E. Schoenfield, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harry J. Smith).
EXAMPLE
a(4) = 17 because 17 is prime and 17^4 + 17^3 + 17^2 + 17 + 1 = 88741 is prime.
MATHEMATICA
f[n_]:=1+n+n^2+n^3+n^4; lst={}; Do[p=Prime[n]; If[PrimeQ[f[p]], AppendTo[lst, p]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 24 2009 *)
Select[Prime[Range[500]], PrimeQ[Total[#^Range[0, 4]]]&] (* Harvey P. Dale, Apr 08 2017 *)
PROG
(PARI) { n=0; for (m=1, 10^9, p=prime(m); if (isprime(p^4 + p^3 + p^2 + p + 1), write("b065509.txt", n++, " ", p); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 20 2009
(PARI) {A065509_vec(N, p=1)=vector(N, i, until(isprime((p^5-1)\(p-1)), p=nextprime(p+1)); p)} \\ M. F. Hasler, Mar 03 2020
(Magma) [n: n in [0..10000]| IsPrime(n) and IsPrime(n^4+n^3+n^2+n+1)] // Vincenzo Librandi, Aug 07 2010
CROSSREFS
Cf. A053182.
Sequence in context: A250185 A063206 A063099 * A094516 A105883 A191036
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Nov 26 2001
STATUS
approved