login
A032294
Number of aperiodic bracelets (turnover necklaces) with n beads of 3 colors.
1
3, 3, 7, 15, 36, 79, 195, 477, 1209, 3168, 8415, 22806, 62412, 172887, 481552, 1351485, 3808080, 10780653, 30615351, 87226932, 249144506, 713378655, 2046856563, 5884468110, 16946569332, 48883597728, 141217159239
OFFSET
1,1
FORMULA
MOEBIUS transform of A027671.
From Herbert Kociemba, Nov 28 2016: (Start)
More generally, gf(k) is the g.f. for the number of bracelets with primitive period n and beads of k colors.
gf(k): Sum_{n>=1} mu(n)*( -log(1-k*x^n)/n + Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)) )/2. (End)
MATHEMATICA
mx=40; gf[x_, k_]:=Sum[ MoebiusMu[n]*(-Log[1-k*x^n]/n+Sum[Binomial[k, i]x^(n i), {i, 0, 2}]/( 1-k x^(2n)))/2, {n, mx}]; CoefficientList[Series[gf[x, 3], {x, 0, mx}], x] (* Herbert Kociemba, Nov 28 2016 *)
PROG
(PARI) a(x, k) = sum(n=1, 40, moebius(n) * (-log(1 - k*x^n )/n + sum(i=0, 2, binomial(k, i) * x^(n*i)) / (1 - k* x^(2*n)))/2);
Vec(a(x, 3) + O(x^41)) \\ Indranil Ghosh, Mar 29 2017
CROSSREFS
Column 3 of A276550.
Sequence in context: A030069 A004043 A104176 * A146034 A374534 A376177
KEYWORD
nonn
STATUS
approved