login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053696 Numbers that can be represented as a string of three or more 1's in a base >= 2. 14
7, 13, 15, 21, 31, 40, 43, 57, 63, 73, 85, 91, 111, 121, 127, 133, 156, 157, 183, 211, 241, 255, 259, 273, 307, 341, 343, 364, 381, 400, 421, 463, 507, 511, 553, 585, 601, 651, 703, 757, 781, 813, 820, 871, 931, 993, 1023, 1057, 1093, 1111, 1123, 1191 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Numbers of the form (b^n-1)/(b-1) for n > 2 and b > 1. - T. D. Noe, Jun 07 2006

Numbers m that are nontrivial repunits for any base b >= 2. For k = 2 (I use k for the exponent since n is used as the index in a(n)) we get (b^k-1)/(b-1) = (b^2-1)/(b-1) = b+1, so every integer m >= 3 is a 2-digit repunit in base b = m-1. And for n = 1 (the 1-digit degenerate repunit) we get (b-1)/(b-1) = 1 for any base b >= 2. If we considered all k >= 1 we would get the sequence of all positive integers except 2 since it is the smallest uniform base used in positional representation (2 might be seen as the "repunit" in a nonpositional base representation such as the Roman numerals where 2 is expressed as II). - Daniel Forgues, Mar 01 2009

These repunits numbers belong to Brazilian numbers (A125134) (see Links: "Les nombres brésiliens" - section IV, p. 32). - Bernard Schott, Dec 18 2012

The Brazilian primes (A085104) belong to this sequence. - Bernard Schott, Dec 18 2012

LINKS

T. D. Noe and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1172 terms from Noe)

Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature.

FORMULA

a(n) ~ n^2 since as n grows the density of repunits of degree 2 among all the repunits tends to 1. - Daniel Forgues, Dec 09 2008

A088323(a(n)) > 1. - Reinhard Zumkeller, Jan 22 2014

EXAMPLE

a(5) = 31 because 31 can be written as 111 base 5 (or indeed 11111 base 2).

MAPLE

N:= 10^4: # to get all terms <= N

V:= Vector(N):

for b from 2 while (b^3-1)/(b-1) <= N do

  inds:= [seq((b^k-1)/(b-1), k=3..ilog[b](N*(b-1)+1))];

  V[inds]:= 1;

od:

select(t -> V[t] = 1, [$1..N]); # Robert Israel, Dec 10 2015

MATHEMATICA

fQ[n_] := Block[{d = Rest@ Divisors[n - 1]}, Length@ d > 2 && Length@ Select[ IntegerDigits[n, d], Union@# == {1} &] > 1]; Select[ Range@ 1200, fQ]

lim=1000; Union[Reap[Do[n=3; While[a=(b^n-1)/(b-1); a<=lim, Sow[a]; n++], {b, 2, Floor[Sqrt[lim]]}]][[2, 1]]]

Take[Union[Flatten[With[{l=Table[PadLeft[{}, n, 1], {n, 3, 100}]}, Table[ FromDigits[#, n]&/@l, {n, 2, 100}]]]], 80] (* Harvey P. Dale, Oct 06 2011 *)

PROG

(PARI) list(lim)=my(v=List(), e, t); for(b=2, sqrt(lim), e=3; while((t=(b^e-1)/(b-1))<=lim, listput(v, t); e++)); vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Oct 06 2011

(PARI) list(lim)=my(v=List(), e, t); for(b=2, lim^(1/3), e=4; while((t=(b^e-1)/(b-1))<=lim, listput(v, t); e++)); vecsort(concat(Vec(v), vector((sqrtint (lim\1*4-3)-3)\2, i, i^2+3*i+3)), , 8) \\ Charles R Greathouse IV, May 30 2013

(Haskell)

a053696 n = a053696_list !! (n-1)

a053696_list = filter ((> 1) . a088323) [2..]

-- Reinhard Zumkeller, Jan 22 2014, Nov 26 2013

CROSSREFS

Cf. A090503 (a subsequence), A119598 (numbers that are repunits in four or more bases), A125134, A085104.

Cf. A108348.

Sequence in context: A076196 A167782 A257521 * A090503 A059520 A293576

Adjacent sequences:  A053693 A053694 A053695 * A053697 A053698 A053699

KEYWORD

nonn,base,easy

AUTHOR

Henry Bottomley, Mar 23 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 16:08 EST 2017. Contains 295003 sequences.