OFFSET
1,1
COMMENTS
The number of Brazilian representations of a non-oblong number m with repdigits of length = 2 is beta'(m) = tau(m)/2 - 1. So, as here beta"(m) = 3, beta(m) = tau(m)/2 + 2 where beta(m) is the number of Brazilian representations of m. So, this sequence is the first subsequence of A326382.
As tau(m) = 2 * (beta(m) - 2) is even, the terms of this sequence are not squares.
Some Mersenne numbers belong to this sequence: M_15 = a(1), M_16 = a(2), M_21 = a(4), M_27 = a(26), ...
LINKS
EXAMPLE
tau(m) = 8 and beta(m) = 6 for m = 32767 with 32767 = R(15)_2 = 77777_8 = (31,31,31)_32.
tau(m) = 12 and beta(m) = 8 for m = 2097151 with 2097151 = R(21)_2 = 7777777_8 = (127,127,127)_128.
tau(m) = 16 and beta(m) = 10 with m = 67053 = (31,31,31)_46 = (21,21,21)_56 = 333_149.
PROG
(PARI) isoblong(n) = my(m=sqrtint(n)); m*(m+1)==n; \\ A002378
beta(n) = sum(i=2, n-2, #vecsort(digits(n, i), , 8)==1); \\ A220136
isok(m) = !isprime(m) && !isoblong(m) && (beta(m) == numdiv(m)/2 + 2); \\ Jinyuan Wang, Aug 02 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jul 20 2019
STATUS
approved