login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152932 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of three 6-gonal polygonal components chained with string components of length l as l varies. 8
32733, 80361, 215658, 559305, 1469565, 3842082, 10063989, 26342577, 68971050, 180563265 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..10.

S. Schlicker, L. Morales, D. Schultheis, Polygonal chain sequences in the space of compact sets, JIS 12 (2009) 09.1.7.

MAPLE

with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, k, m: k:=3: m:=3: F := t -> fibonacci(t): L := t -> fibonacci(t-1)+fibonacci(t+1): aa := (m, n) -> L(2*m)*F(n-2)+F(2*m+2)*F(n-1): b := (m, n) -> L(2*m)*F(n-1)+F(2*m+2)*F(n): c := (m, n) -> F(2*m+2)*F(n-2)+F(m+2)^2*F(n-1): d := (m, n) -> F(2*m+2)*F(n-1)+F(m+2)^2*F(n): lambda := (m, n) -> (d(m, n)+aa(m, n)+sqrt((d(m, n)-aa(m, n))^2+4*b(m, n)*c(m, n)))*(1/2): delta := (m, n) -> (d(m, n)+aa(m, n)-sqrt((d(m, n)-aa(m, n))^2+4*b(m, n)*c(m, n)))*(1/2): R := (m, n) -> ((lambda(m, n)-d(m, n))*L(2*m)+b(m, n)*F(2*m+2))/(2*lambda(m, n)-d(m, n)-aa(m, n)): S := (m, n) -> ((lambda(m, n)-aa(m, n))*L(2*m)-b(m, n)*F(2*m+2))/(2*lambda(m, n)-d(m, n)-aa(m, n)): simplify(R(m, n)*lambda(m, n)^(k-1)+S(m, n)*delta(m, n)^(k-1)); end proc;

CROSSREFS

A152927, A152928, A152929, A152930, A152931, A152933, A152934, A152935

Sequence in context: A172700 A101744 A013691 * A326382 A326389 A075966

Adjacent sequences:  A152929 A152930 A152931 * A152933 A152934 A152935

KEYWORD

nonn

AUTHOR

Steven Schlicker (schlicks(AT)gvsu.edu), Dec 15 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 17:34 EST 2019. Contains 329106 sequences. (Running on oeis4.)