The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A009003 Hypotenuse numbers (squares are sums of 2 nonzero squares). 68
 5, 10, 13, 15, 17, 20, 25, 26, 29, 30, 34, 35, 37, 39, 40, 41, 45, 50, 51, 52, 53, 55, 58, 60, 61, 65, 68, 70, 73, 74, 75, 78, 80, 82, 85, 87, 89, 90, 91, 95, 97, 100, 101, 102, 104, 105, 106, 109, 110, 111, 113, 115, 116, 117, 119, 120, 122, 123, 125, 130, 135, 136, 137, 140 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Multiples of Pythagorean primes A002144 or of primitive Pythagorean triangles' hypotenuses A008846. - Lekraj Beedassy, Nov 12 2003 This is exactly the sequence of positive integers with at least one prime divisor of the form 4k + 1. Compare A072592. - John W. Layman, Mar 12 2008 and Franklin T. Adams-Watters, Apr 26 2009 Circumradius R of the triangles such that the area, the sides and R are integers. - Michel Lagneau, Mar 03 2012 The 2 squares summing to a(n)^2 cannot be equal because sqrt(2) is not rational. - Jean-Christophe Hervé, Nov 10 2013 Closed under multiplication. The primitive elements are those with exactly one prime divisor of the form 4k + 1 with multiplicity one, which are also those for which there exists a unique integer triangle = A084645. - Jean-Christophe Hervé, Nov 11 2013 a(n) are numbers whose square is the mean of two distinct nonzero squares. This creates 1-to-1 mapping between a Pythagorean triple and a "Mean" triple. If the Pythagorean triple is written, abnormally, as {j, k, h} where j^2 +(j+k)^2 = h^2, and h = a(n), then the corresponding "Mean" triple with the same h is {k, 2j, h} where (k^2 + (k+2j)^2)/2 = h^2. For example for h = 5, the Pythagorean triple is {3, 1, 5} and the Mean triple is {1, 6, 5}. - Richard R. Forberg, Mar 01 2015 Integral side lengths of rhombuses with integral diagonals p and q (therefore also with integral areas A because A = pq/2 is some multiple of 24). No such rhombuses are squares. - Rick L. Shepherd, Apr 09 2017 Conjecture: these are bases n in which exists an n-adic integer x satisfying x^5 = x, and 5 is the smallest k>1 such that x^k =x (so x^2, x^3 and x^4 are not x). Example: the 10-adic integer x = ...499879186432 (A120817) satisfies x^5 = x, and x^2, x^3, and x^4 are not x, so 10 is in this sequence. See also A120817, A210850 and A331548. - Patrick A. Thomas, Mar 01 2020 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 98-104. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe) R. Chapman, Pythagorean triples and sums of squares Steven R. Finch, Landau-Ramanujan Constant [Broken link] Steven R. Finch, Landau-Ramanujan Constant [From the Wayback machine] Ron Knott, Pythagorean Triples and Online Calculators J. Pahikkala, On contraharmonic mean and Pythagorean triples, Elemente der Mathematik, 65:2 (2010), 62-67. Patrick A. Thomas, Solutions of x^5=x up to base 100 FORMULA A005089(a(n)) > 0. - Reinhard Zumkeller, Jan 07 2013 a(n) ~ n. - Charles R Greathouse IV, Jan 13 2022 MAPLE isA009003 := proc(n)     local p;     for p in numtheory[factorset](n) do         if modp(p, 4) = 1 then             return true;         end if;     end do:     false; end proc: for n from 1 to 200 do     if isA009003(n) then         printf("%d, ", n) ;     end if; end do: # R. J. Mathar, Nov 17 2014 MATHEMATICA f[n_] := Module[{k = 1}, While[(n - k^2)^(1/2) != IntegerPart[(n - k^2)^(1/2)], k++; If[2 * k^2 >= n, k = 0; Break[]]]; k]; A009003 = {}; Do[If[f[n^2] > 0, AppendTo[A009003, n]], {n, 3, 100}]; A009003 (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *) Select[Range, Length[PowersRepresentations[#^2, 2, 2]] > 1 &] (* Alonso del Arte, Feb 11 2014 *) PROG (PARI) is_A009003(n)=setsearch(Set(factor(n)[, 1]%4), 1)  \\ M. F. Hasler, May 27 2012 (PARI) list(lim)=my(v=List(), u=vectorsmall(lim\=1)); forprimestep(p=5, lim, 4, forstep(n=p, lim, p, u[n]=1)); for(i=5, lim, if(u[i], listput(v, i))); u=0; Vec(v) \\ Charles R Greathouse IV, Jan 13 2022 (Haskell) import Data.List (findIndices) a009003 n = a009003_list !! (n-1) a009003_list = map (+ 1) \$ findIndices (> 0) a005089_list -- Reinhard Zumkeller, Jan 07 2013 (Python) from itertools import count, islice from sympy import primefactors def A009003_gen(): # generator of terms     return filter(lambda n:any(map(lambda p: p % 4 == 1, primefactors(n))), count(1)) A009003_list = list(islice(A009003_gen(), 20)) # Chai Wah Wu, Jun 22 2022 CROSSREFS Cf. A009000, A024507, A004431, A072592, A004613, A187811. Complement of A004144. Primes in this sequence give A002144. Same as A146984 (integer contraharmonic means) as sets - see Pahikkala 2010, Theorem 5. Cf. A083025, A084645 (primitive elements), A084646, A084647, A084648, A084649, A006339. Sequence in context: A198389 A057100 A304436 * A071821 A334678 A201012 Adjacent sequences:  A009000 A009001 A009002 * A009004 A009005 A009006 KEYWORD nonn AUTHOR EXTENSIONS Definition edited by Jean-Christophe Hervé, Nov 10 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 2 23:51 EDT 2022. Contains 357230 sequences. (Running on oeis4.)