login
A046005
Discriminants of imaginary quadratic fields with class number 8 (negated).
5
95, 111, 164, 183, 248, 260, 264, 276, 295, 299, 308, 371, 376, 395, 420, 452, 456, 548, 552, 564, 579, 580, 583, 616, 632, 651, 660, 712, 820, 840, 852, 868, 904, 915, 939, 952, 979, 987, 995, 1032, 1043, 1060, 1092, 1128, 1131, 1155, 1195, 1204
OFFSET
1,1
COMMENTS
131 discriminants in this sequence (almost certainly but not proved).
LINKS
Steven Arno, M. L. Robinson and Ferrel S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arithm. 83.4 (1998), 295-330
Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796.
C. Wagner, Class Number 5, 6 and 7, Math. Comput. 65, 785-800, 1996.
Eric Weisstein's World of Mathematics, Class Number.
MATHEMATICA
Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[6400], NumberFieldClassNumber[Sqrt[-#]] == 8 &]] (* Jean-François Alcover, Jun 27 2012 *)
PROG
(PARI) ok(n)={isfundamental(-n) && quadclassunit(-n).no == 8} \\ Andrew Howroyd, Jul 20 2018
(Sage) [n for n in (1..6500) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==8] # G. C. Greubel, Mar 01 2019
KEYWORD
nonn,fini
STATUS
approved