OFFSET
1,1
COMMENTS
87 discriminants in this sequence (almost certainly but not proved).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..87
Steven Arno, M. L. Robinson and Ferrel S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arithm. 83.4 (1998), 295-330
Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796.
C. Wagner, Class Number 5, 6 and 7, Math. Comput. 65, 785-800, 1996.
Eric Weisstein's World of Mathematics, Class Number.
MATHEMATICA
Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[14000], NumberFieldClassNumber[Sqrt[-#]] == 10 &]] (* Jean-François Alcover, Jun 27 2012 *)
PROG
(PARI) ok(n)={isfundamental(-n) && qfbclassno(-n) == 10} \\ Andrew Howroyd, Jul 24 2018
(Sage) [n for n in (1..3500) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==10] # G. C. Greubel, Mar 01 2019
CROSSREFS
KEYWORD
nonn,fini
AUTHOR
STATUS
approved