|
|
A032742
|
|
a(1) = 1; for n > 1, a(n) = largest proper divisor of n.
|
|
207
|
|
|
1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 10, 7, 11, 1, 12, 5, 13, 9, 14, 1, 15, 1, 16, 11, 17, 7, 18, 1, 19, 13, 20, 1, 21, 1, 22, 15, 23, 1, 24, 7, 25, 17, 26, 1, 27, 11, 28, 19, 29, 1, 30, 1, 31, 21, 32, 13, 33, 1, 34, 23, 35, 1, 36, 1, 37, 25, 38, 11, 39, 1, 40
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
It seems that a(n) = Max{gcd(n,j); j=n+1..2n-1}. - Labos Elemer, May 22 2002
This is correct: No integer in the range [n+1, 2n-1] has n as its divisor, but certainly at least one multiple of the largest proper divisor of n will occur there (e.g., if it is n/2, then at n + (n/2)). - Antti Karttunen, Dec 18 2014
|
|
LINKS
|
Rémi Eismann, Table of n, a(n) for n=1..10000 (first 1000 terms from T. D. Noe)
Eric Weisstein's World of Mathematics, Proper Divisor
|
|
FORMULA
|
a(n) = n / A020639(n).
Other identities and observations:
A054576(n) = a(a(n)); A117358(n) = a(a(a(n))) = a(A054576(n)); a(A008578(n)) = 1, a(A002808(n)) > 1. - Reinhard Zumkeller, Mar 10 2006
a(n) = A130064(n) / A006530(n). - Reinhard Zumkeller, May 05 2007
a(m)*a(n) < a(m*n) for m and n > 1. - Reinhard Zumkeller, Apr 11 2008
a(m*n) = max(m*a(n), n*a(m)). - Robert Israel, Dec 18 2014
From Antti Karttunen, Mar 31 2018: (Start)
a(n) = n - A060681(n).
For n > 1, a(n) = A003961^(r)(A246277(n)), where r = A055396(n)-1 and A003961^(r)(n) stands for shifting the prime factorization of n by r positions towards larger primes.
a(n) = A250246(A302042(A250245(n))) = A302026(A302032(A302025(n))).
For all n >= 1, A276085(a(A276086(n))) = A276151(n).
(End)
|
|
MAPLE
|
A032742 :=proc(n) option remember; if n = 1 then 1; else numtheory[divisors](n) minus {n} ; max(op(%)) ; end if; end proc: # R. J. Mathar, Jun 13 2011
1, seq(n/min(numtheory:-factorset(n)), n=2..1000); # Robert Israel, Dec 18 2014
|
|
MATHEMATICA
|
f[n_] := If[n == 1, 1, Divisors[n][[-2]]]; Table[f[n], {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2010 *)
Join[{1}, Divisors[#][[-2]]&/@Range[2, 80]] (* Harvey P. Dale, Nov 29 2011 *)
a[n_] := n/FactorInteger[n][[1, 1]]; Array[a, 100] (* Amiram Eldar, Nov 26 2020 *)
|
|
PROG
|
(PARI) a(n)=if(n==1, 1, n/factor(n)[1, 1]) \\ Charles R Greathouse IV, Jun 15 2011
(Haskell)
a032742 n = n `div` a020639 n -- Reinhard Zumkeller, Oct 03 2012
(Scheme) (define (A032742 n) (/ n (A020639 n))) ;; Antti Karttunen, Dec 18 2014
|
|
CROSSREFS
|
Equals n/A020639(n).
Cf. A032741, A052126, A055396, A060681, A068319, A063928, A246277, A286477, A300236, A302032, A302042, A325563, A325567.
Sequence in context: A325641 A325563 A159353 * A060654 A291329 A291328
Adjacent sequences: A032739 A032740 A032741 * A032743 A032744 A032745
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
Patrick De Geest, May 15 1998
|
|
STATUS
|
approved
|
|
|
|