OFFSET
1,1
COMMENTS
Parametric representation of the solution is (x,y,z) = (8n^2, 7n^2, 13n^3), thus getting a(n) = 728*n^7.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
FORMULA
a(n) = 728*n^7.
From Colin Barker, Oct 25 2019: (Start)
G.f.: 728*x*(1 + 120*x + 1191*x^2 + 2416*x^3 + 1191*x^4 + 120*x^5 + x^6) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
MATHEMATICA
728*Range[20]^7 (* Harvey P. Dale, May 27 2012 *)
PROG
(PARI) Vec(728*x*(1 + 120*x + 1191*x^2 + 2416*x^3 + 1191*x^4 + 120*x^5 + x^6) / (1 - x)^8 + O(x^25)) \\ Colin Barker, Oct 25 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Aug 15 2003
EXTENSIONS
More terms from Matthew Conroy, Jan 16 2006
STATUS
approved