

A050790


Consider the Diophantine equation x^3 + y^3 = z^3  1 (x < y < z) or 'Fermat near misses'. Arrange solutions by increasing values of z. Sequence gives values of x^3 + y^3 = z^3  1.


3



728, 2985983, 5088447, 128787624, 192100032, 387420488, 738763263, 1030300999, 1771560999, 12230590463, 29704593672, 52861038776, 177978515624, 224866629440, 308367729215, 659184444926, 1586874322943
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107124.
David Wells, "Curious and Interesting Numbers", Revised Ed. 1997, Penguin Books, On number "729", p. 147.


LINKS

Table of n, a(n) for n=1..17.
Eric Weisstein's World of Mathematics, Diophantine Equation  3rd Powers


EXAMPLE

575^3 + 2292^3 = 2304^3  1 = 12230590463.


CROSSREFS

Cf. A050787, A050788, A050789.
Sequence in context: A085479 A203664 A265103 * A278609 A278894 A214106
Adjacent sequences: A050787 A050788 A050789 * A050791 A050792 A050793


KEYWORD

nonn


AUTHOR

Patrick De Geest, Sep 15 1999


EXTENSIONS

More terms from Jud McCranie, Dec 25 2000


STATUS

approved



