This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085377 a(n) = 15n^2 + 13n^3. 2
 0, 28, 164, 486, 1072, 2000, 3348, 5194, 7616, 10692, 14500, 19118, 24624, 31096, 38612, 47250, 57088, 68204, 80676, 94582, 110000, 127008, 145684, 166106, 188352, 212500, 238628, 266814, 297136, 329672, 364500, 401698, 441344, 483516, 528292 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Numbers that are the sum of three solutions of the Diophantine equation x^3 - y^3 = z^2. Parametric representation of the solution is (x,y,z) = (8n^2, 7n^2, 13n^3), thus getting a(n) = 8n^2 + 7n^2 + 13n^3 = 15n^2 + 13n^3. Geometrically, 13^2 = 8^3 - 7^3 means that the square of the hypotenuse of a Pythagorean triangle (5,12,13) is the difference of two cubes, which I recently found on p70 of David Wells' book "The Penguin Dictionary of Curios and Interesting Numbers", Penguin Books, 1997. See also A085479. LINKS FORMULA a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). G.f.: 2*x*(14+26*x-x^2)/(1-x)^4. [From R. J. Mathar, Apr 20 2009] MATHEMATICA Table[15n^2 + 13n^3, {n, 1, 34}] CROSSREFS Cf. A085409. Sequence in context: A184607 A215699 A220158 * A219298 A197967 A305270 Adjacent sequences:  A085374 A085375 A085376 * A085378 A085379 A085380 KEYWORD nonn AUTHOR Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Aug 12 2003 EXTENSIONS More terms from Robert G. Wilson v, Aug 16 2003 Edited by N. J. A. Sloane, Apr 29 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 18:37 EST 2019. Contains 329865 sequences. (Running on oeis4.)