The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085480 Expansion of 3*x*(1+2*x)/(1-3*x-3*x^2). 4
 0, 3, 15, 54, 207, 783, 2970, 11259, 42687, 161838, 613575, 2326239, 8819442, 33437043, 126769455, 480619494, 1822166847, 6908359023, 26191577610, 99299809899, 376474162527, 1427321917278, 5411388239415, 20516130470079 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A Jacobsthal variation. p - q = sqrt(21); p*q = -3; p + q = 3. REFERENCES Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", Wiley, 2001, p. 471. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (3,3). FORMULA a(n) = p^n + q^n, where p = (3 + sqrt(21))/2, q = (3 - sqrt 21)/2. a(n) = 3*a(n-1) + 3*a(n-2), a(1)=3, a(2)=15. - Philippe Deléham, Nov 19 2008 G.f.: G(0)/x - 2/x, where G(k) = 1 + 1/(1 - x*(7*k-3)/(x*(7*k+4) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013 EXAMPLE a(4) = q^4 + q^4 = 207; p^5 + q^5 = 783, where p = (3 + sqrt(21))/2, q = (3 - sqrt(21))/2. MATHEMATICA CoefficientList[Series[3x (1+2x)/(1-3x-3x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{3, 3}, {0, 3, 15}, 30] (* Harvey P. Dale, Jan 10 2021 *) CROSSREFS Cf. A030195. Sequence in context: A290764 A286986 A261565 * A265974 A099581 A026696 Adjacent sequences: A085477 A085478 A085479 * A085481 A085482 A085483 KEYWORD nonn,easy AUTHOR Gary W. Adamson, Jul 02 2003 EXTENSIONS Zero prepended by Harvey P. Dale, Jan 10 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 05:43 EST 2022. Contains 358578 sequences. (Running on oeis4.)