This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265103 a(n) = binomial(10*n + 7, 5*n + 1)/(10*n + 7). 5
 1, 728, 482885, 347993910, 267058714626, 214401560777712, 177957899774070416, 151516957974714281810, 131614194900668669130060, 116186564091895720987588128, 103938666796148178180041038716, 94020887900502277905668153549928, 85855382816448334044679630209920925 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Let x = p/q be a positive rational in reduced form with p,q > 0. Define Cat(x) = 1/(2*p + q)*binomial(2*p + q, p). Then Cat(n) = Catalan(n). This sequence is Cat(n + 1/5). Cf. A065097 (Cat(n + 1/2), A265101 (Cat(n + 1/3)) and A265102 (Cat(n + 1/4)). Number of maximal faces of the rational associahedron Ass(5*n + 1, 5*n + 6). Number of lattice paths from (0, 0) to (5*n + 6, 5*n + 1) using steps of the form (1, 0) and (0, 1) and staying above the line y = (5*n + 1)/(5*n + 6)*x. See Armstrong et al. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..333 D. Armstrong, B. Rhoades, and N. Williams, Rational associahedra and noncrossing partitions arxiv:1305.7286v1 [math.CO], 2013. FORMULA a(n) = binomial(10*n + 7, 5*n + 1)/(10*n + 7). (n + 1)*(5*n - 2)*(5*n - 3)*(5*n + 4)*(5*n + 6)*a(n) = 32*(2*n + 1)*(10*n + 1)*(10*n - 1)*(10*n + 3)*(10*n - 3)*a(n-1) with a(0) = 1. From Ilya Gutkovskiy, Feb 28 2017: (Start) O.g.f.: (5F4(-3/10,-1/10,1/10,3/10,1/2; -3/5,-2/5,4/5,6/5; 1024*x) - 1)/(2*x). E.g.f.: 5F5(7/10,9/10,11/10,13/10,3/2; 2/5,3/5,9/5,2,11/5; 1024*x). a(n) ~ 4^(5*n+3)/(5*sqrt(5*Pi)*n^(3/2)). (End) MAPLE seq(binomial(10*n + 7, 5*n + 1)/(10*n + 7), n = 0..12); MATHEMATICA Table[Binomial[10n+7, 5n+1]/(10n+7), {n, 0, 20}] (* Vincenzo Librandi, Dec 09 2015 *) PROG (PARI)  a(n)=binomial(10*n + 7, 5*n + 1)/(10*n + 7) \\ Anders HellstrÃ¶m, Dec 07 2015 (MAGMA) [Binomial(10*n+7, 5*n+1)/(10*n+7): n in [0..15]]; // Vincenzo Librandi, Dec 09 2015 (Sage) [binomial(10*n+7, 5*n+1)/(10*n+7) for n in (0..20)] # G. C. Greubel, Feb 16 2019 CROSSREFS Row 5 of A306444. Cf. A000108, A065097, A265101, A265102. Sequence in context: A203909 A085479 A203664 * A050790 A278609 A278894 Adjacent sequences:  A265100 A265101 A265102 * A265104 A265105 A265106 KEYWORD nonn,easy AUTHOR Peter Bala, Dec 02 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 07:31 EST 2019. Contains 329948 sequences. (Running on oeis4.)