OFFSET
1,1
COMMENTS
Parametric representation of the solution is (x,y,z) = (6n^3, 3n^3, 3n^2), thus getting a(n) = 54*n^8.
LINKS
Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
FORMULA
a(n) = 54*n^8.
a(1)=54, a(2)=13824, a(3)=354294, a(4)=3538944, a(5)=21093750, a(6)=90699264, a(7)=311299254, a(8)=905969664, a(9)=2324522934, a(n)=9*a(n-1)- 36*a(n-2)+ 84*a(n-3)- 126*a(n-4)+126*a(n-5)- 84*a(n-6)+ 36*a(n-7)-9*a(n-8)+a(n-9). - Harvey P. Dale, Jul 10 2013
MAPLE
MATHEMATICA
54*Range[20]^8 (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {54, 13824, 354294, 3538944, 21093750, 90699264, 311299254, 905969664, 2324522934}, 20] (* Harvey P. Dale, Jul 10 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Aug 15 2003
EXTENSIONS
More terms from Ray Chandler, Nov 06 2003
STATUS
approved