login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114536
Let the height of a polynomial be the largest coefficient in absolute value. Then a(n) is the maximal height of a divisor of x^n-1 with integral coefficients.
8
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 3, 1, 2, 1, 4, 1, 12, 1, 1, 3, 2, 5, 4, 1, 2, 3, 5, 1, 12, 1, 4, 5, 2, 1, 6, 1, 2, 3, 4, 1, 2, 5, 7, 3, 2, 1, 54, 1, 2, 7, 1, 5, 12, 1, 4, 3, 32, 1, 8, 1, 2, 3, 4, 7, 12, 1, 7, 1, 2, 1, 55, 5, 2, 3, 8, 1, 58, 7, 4, 3, 2, 5, 6, 1, 2, 9, 4, 1, 12
OFFSET
1,6
LINKS
Felipe Garcia H., Research.
Carl Pomerance and Nathan C. Ryan, The maximal height of divisors of x^n-1, Illinois Journal of Mathematics 51 (2007) 597-604.
Nathan C. Ryan, Research.
FORMULA
a(n)=1 iff n=1 or n=p^k where p is a prime and k is a positive integer; a(pq)=min{p,q} where p and q are distinct primes.
EXAMPLE
a(6)=2 since (x+1)(x^2+x+1)=x^3+2x^2+2x+1 divides x^6-1 and no other divisor has a greater height.
MATHEMATICA
cyc[n_] := cyc[n] = Cyclotomic[n, x]; f[n_] := Block[{sd = Rest@ Subsets@ Divisors@ n, lst = {}, lmt = 2^DivisorSigma[0, n]}, For[i = 1, i < lmt, i++, AppendTo[lst, Max@ Abs@ CoefficientList[ Expand[ Times @@ (cyc[ # ] & /@ sd[[i]])], x]]]; Max@lst]; Array[f, 102] (* Robert G. Wilson v, Mar 01 2006 *)
PROG
(PARI) A114536(n) = { my(ds=divisors('x^n - 1), m=0); for(i=1, length(ds), for(j=0, poldegree(ds[i]), m = max(m, abs(polcoeff(ds[i], j))))); (m); }; \\ Antti Karttunen, Jul 01 2018
(PARI)
\\ This version needs less memory:
prod_by_bits(bits, fs) = { my(m=1, i=1); while(bits>0, if((bits%2), m *= fs[i]); i++; bits >>= 1); (m); };
A114536(n) = { my(fs=factor('x^n - 1)[, 1], m=0, d); for(b=1, (2^#fs)-1, d = prod_by_bits(b, fs); for(j=0, poldegree(d), m = max(m, abs(polcoeff(d, j))))); (m); }; \\ Antti Karttunen, Jul 01 2018
CROSSREFS
Cf. A117215 (number of divisors of x^n-1 having the maximal height).
Sequence in context: A345994 A052128 A284600 * A330692 A349658 A345992
KEYWORD
nonn,nice
AUTHOR
Felipe Garcia (fgarciah(AT)ucla.edu), Feb 15 2006
EXTENSIONS
Edited and extended by Robert G. Wilson v, Mar 01 2006
STATUS
approved